The ionization chamber produces significant space-charge and ion recombination effects at ultra-high dose rates,posing achallenge for dose monitoring.In addition,there is no generally accepted ion correction model for...The ionization chamber produces significant space-charge and ion recombination effects at ultra-high dose rates,posing achallenge for dose monitoring.In addition,there is no generally accepted ion correction model for dosimetry in FLASHradiotherapy,making it crucial to monitor the dose at ultra-high dose rates accurately and in real time.In this study,the airpressure of the ionization chamber was reduced to perform real-time beam monitoring,and a Faraday cup was used for calibrationfor active dosimetry.To study the saturation effect of the ionization chamber,the drift,attachment,recombination,anddiffusion processes of the electron-ion pairs were modeled using finite-element analysis based on physical phenomenologicalprinciples,and the correction factor was calculated.The experimental results showed that the FLASH ionization chambermeasures good dose linearity at a dose rate of approximately 0.2 Gy/s.When the air pressure of the chamber was adjustedto 10 mbar,the response of the FLASH ionization chamber was linear at a dose rate of approximately 50 Gy/s,with theresiduals within 2%.Furthermore,by using physical phenomenology to resolve the process of electron-ion pair motion inthe sensitive volume of the ionization chamber,the analytical model better describes the saturation effect of carbon ions atultra-high dose rates.The maximum deviation in the calculated correction factor is less than 10%.We studied the saturationeffect in dose measurement,achieving accurate and fast dose and profile position measurement across different dose ratesin a wide range based on the Heavy Ion Research Facility in Lanzhou.展开更多
文摘The ionization chamber produces significant space-charge and ion recombination effects at ultra-high dose rates,posing achallenge for dose monitoring.In addition,there is no generally accepted ion correction model for dosimetry in FLASHradiotherapy,making it crucial to monitor the dose at ultra-high dose rates accurately and in real time.In this study,the airpressure of the ionization chamber was reduced to perform real-time beam monitoring,and a Faraday cup was used for calibrationfor active dosimetry.To study the saturation effect of the ionization chamber,the drift,attachment,recombination,anddiffusion processes of the electron-ion pairs were modeled using finite-element analysis based on physical phenomenologicalprinciples,and the correction factor was calculated.The experimental results showed that the FLASH ionization chambermeasures good dose linearity at a dose rate of approximately 0.2 Gy/s.When the air pressure of the chamber was adjustedto 10 mbar,the response of the FLASH ionization chamber was linear at a dose rate of approximately 50 Gy/s,with theresiduals within 2%.Furthermore,by using physical phenomenology to resolve the process of electron-ion pair motion inthe sensitive volume of the ionization chamber,the analytical model better describes the saturation effect of carbon ions atultra-high dose rates.The maximum deviation in the calculated correction factor is less than 10%.We studied the saturationeffect in dose measurement,achieving accurate and fast dose and profile position measurement across different dose ratesin a wide range based on the Heavy Ion Research Facility in Lanzhou.