期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Fine mapping and validation of a stable QTL for thousand-kernel weight in wheat(Triticum aestivum L.) 被引量:1
1
作者 Deyuan Meng Aamana Batool +18 位作者 Yazhou Xuan Ruiqing Pan Na Zhang Wei Zhang Liya Zhi Xiaoli Ren Wenqing Li Jijie Li Yanxiao Niu Shuzhi Zheng Jun Ji Xiaoli Shi Lei Wang Hongqing Ling Chunhua Zhao fa cui Xigang Liu Junming Li Liqiang Song 《The Crop Journal》 SCIE CSCD 2023年第5期1491-1500,共10页
Thousand-kernel weight(TKW)is a measure of grain weight,a target of wheat breeding.The object of this study was to fine-map a stable quantitative trait loci(QTL)for TKW and identify its candidate gene in a recombinant... Thousand-kernel weight(TKW)is a measure of grain weight,a target of wheat breeding.The object of this study was to fine-map a stable quantitative trait loci(QTL)for TKW and identify its candidate gene in a recombinant inbred line(RIL)population derived from the cross of Kenong 9204(KN9204)and Jing411(J411).On a high-density genetic linkage map,24,26 and 25 QTL were associated with TKW,kernel length(KL),and kernel width(KW),respectively.A major and stable QTL,QTkw-2D,was mapped to an8.3 cM interval on chromosome arm 2DL.By saturation of polymorphic markers in its target region,QTkw-2D was confined to a 9.13 Mb physical interval using a secondary mapping population derived from a residually heterozygous line(F6:7).This interval was further narrowed to 2.52 Mb using QTkw-2D near-isogenic lines(NILs).NILs~(KN9204)had higher fresh and dry weights than NILsJ411at various grain-filling stages.The TKW and KW of NILs~(KN9204)were much higher than those of NILsJ411in field trials.By comparison of both DNA sequence and expression between KN9204 and J411,TraesCS2D02G460300.1(TraesKN2D01HG49350)was assigned as a candidate gene for QTkw-2D.This was confirmed by RNA sequencing(RNA-seq)of QTkw-2D NILs.These results provide the basis of map-based cloning of QTkw-2D,and DNA markers linked to the candidate gene may be used in marker-assisted selection. 展开更多
关键词 WHEAT Thousand-kernel weight Fine mapping Candidate gene
在线阅读 下载PDF
Comparative genomic and transcriptomic analyses uncover the molecular basis of high nitrogen-use efficiency in the wheat cultivar Kenong 9204 被引量:19
2
作者 Xiaoli Shi fa cui +33 位作者 Xinyin Han Yilin He Long Zhao Na Zhang Hao Zhang Haidong Zhu Zhexin Liu Bin Ma Shusong Zheng Wei Zhang Jiajia Liu Xiaoli fan Yaoqi Si Shuiquan Tian Jianqing Niu Huilan Wu Xuemei Liu Zhuo Chen Deyuan Meng Xiaoyan Wang Liqiang Song Lijing Sun Jie Han Hui Zhao Jun Ji Zhiguo Wang Xiaoyu He Ruilin Li Xuebin Chi Chengzhi Liang Beifang Niu Jun Xiao Junming Li Hong-Qing Ling 《Molecular Plant》 SCIE CAS CSCD 2022年第9期1440-1456,共17页
Studying the regulatory mechanisms that drive nitrogen-use efficiency(NUE)in crops is important for sustainable agriculture and environmental protection.In this study,we generated a high-quality genome assembly for th... Studying the regulatory mechanisms that drive nitrogen-use efficiency(NUE)in crops is important for sustainable agriculture and environmental protection.In this study,we generated a high-quality genome assembly for the high-NUE wheat cultivar Kenong 9204 and systematically analyzed genes related to nitrogen uptake and metabolism.By comparative analyses,we found that the high-affinity nitrate transporter gene family had expanded in Triticeae.Further studies showed that subsequent functional differentiation endowed the expanded family members with saline inducibility,providing a genetic basis for improving the adaptability of wheat to nitrogen deficiency in various habitats.To explore the genetic and molecular mechanisms of high NUE,we compared genomic and transcriptomic data from the high-NUE cultivar Kenong 9204(KN9204)and the low-NUE cultivar Jing 411 and quantified their nitrogen accumulation under high-and low-nitrogen conditions.Compared with Jing 411,KN9204 absorbed significantly more nitrogen at the reproductive stage after shooting and accumulated it in the shoots and seeds.Transcriptome data analysis revealed that nitrogen deficiency clearly suppressed the expression of genes related to cell division in the young spike of Jing 411,whereas this suppression of gene expression was much lower in KN9204.In addition,KN9204 maintained relatively high expression of NPF genes for a longer time than Jing 411 during seed maturity.Physiological and transcriptome data revealed that KN9204 was more tolerant of nitrogen deficiency than Jing 411,especially at the reproductive stage.The high NUE of KN9204 is an integrated effect controlled at different levels.Taken together,our data provide new insights into the molecular mechanisms of NUE and important gene resources for improving wheat cultivars with a higher NUE trait. 展开更多
关键词 WHEAT genome sequencing spatiotemporal gene expression expansion and differentiation of gene family nitrogen use efficiency Kenong 9204
原文传递
Boosting wheat functional genomics via an indexed EMS mutant library of KN9204 被引量:3
3
作者 Dongzhi Wang Yongpeng Li +21 位作者 Haojie Wang Yongxin Xu Yiman Yang Yuxin Zhou Zhongxu Chen Yuqing Zhou Lixuan Gui Yi Guo Chunjiang Zhou Wenqiang Tang Shuzhi Zheng Lei Wang Xiulin Guo Yingjun Zhang fa cui Xuelei Lin Yuling Jiao Yuehui He Junming Li Fei He Xigang Liu Jun Xiao 《Plant Communications》 SCIE CSCD 2023年第4期58-76,共19页
A better understanding of wheat functional genomics can improve targeted breeding for better agronomic traits and environmental adaptation.However,the lack of gene-indexed mutants and the low transformation efficiency... A better understanding of wheat functional genomics can improve targeted breeding for better agronomic traits and environmental adaptation.However,the lack of gene-indexed mutants and the low transformation efficiency of wheat limit in-depth gene functional studies and genetic manipulation for breeding.In this study,we created a library for KN9204,a popular wheat variety in northern China,with a reference genome,transcriptome,and epigenome of different tissues,using ethyl methyl sulfonate(EMS)mutagenesis.This library contains a vast developmental diversity of critical tissues and transition stages.Exome capture sequencing of 2090 mutant lines using KN9204 genome-designed probes revealed that 98.79%of coding genes had mutations,and each line had an average of 1383 EMS-type SNPs.We identified new allelic variations for crucial agronomic trait-related genes such as Rht-D1,Q,TaTB1,and WFZP.We tested 100 lines with severemutations in 80 NAC transcription factors(TFs)under drought and salinity stress and identified 13 lines with altered sensitivity.Further analysis of three lines using transcriptome and chromatin accessibility data revealed hundreds of direct NAC targets with altered transcription patterns under salt or drought stress,including SNAC1,DREB2B,CML16,and ZFP182,factors known to respond to abiotic stress.Thus,we have generated and indexed a KN9204 EMS mutant library that can facilitate functional genomics research and offer resources for genetic manipulation of wheat. 展开更多
关键词 WHEAT exome capture sequencing EMS mutagenesis functional genomics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部