The wide application of carbon fiber reinforced plastic(CFRP)components in modern aerospace manufacturing field puts high demands on the manufacturing process.Especially,the temperature increase during continuous mill...The wide application of carbon fiber reinforced plastic(CFRP)components in modern aerospace manufacturing field puts high demands on the manufacturing process.Especially,the temperature increase during continuous milling process becomes a key factor affecting the performance of composites,and the high milling temperature induces a variety of processing defects.This paper obtained the temperature variation data during the end milling process of CFRP laminates through experiments.After data fitting,the data were transformed into a function of heat flux density varying with time.In the finite element analysis,a double-ellipsoid moving heat source model was introduced,and a moving heat source subrou-tine was written based on the time-varying function of heat flux density to more accurately describe the thermal effects dur-ing the milling process and simulate the changes in the temperature field during milling.The Hashin failure criterion is a-dopted as the basis of fiber and matrix failure,and the simulation results of the temperature field are input into the thermal-force coupling simulation model as the predefined field conditions for solving and analyzing by means of sequential thermal-force coupling,so as to establish a thermal-force coupling simulation and analysis model for milling processing of CFRP end faces.The model simulation results can provide a basis for exploring the damage evolution law of CFRP material under the influence of temperature.展开更多
A staged modeling approach is proposed to divide the needling process into three stages:deformation,insertion and smoothness,and construct dynamic coupling models of rigid force,cutting force and friction force respec...A staged modeling approach is proposed to divide the needling process into three stages:deformation,insertion and smoothness,and construct dynamic coupling models of rigid force,cutting force and friction force respectively.Based on the Boussinesq contact theory,the initial tip-fabric contact behavior is analyzed,combined with the elastic cutting theo-ry to quantify the fiber breakage mechanism,and the Winkler foundation model and LuGre dynamic friction model are used to characterize the friction properties of the needle shaft.It is shown that:the stiffness force in the deformation stage is af-fected by the geometrical parameters of the needle tip and the elastic modulus of the fabric;the cutting force in the insertion stage is closely related to the micro deformation of the fiber;and the dynamic friction behavior in the smooth stage can be depicted by the LuGre model with high accuracy.The complete needling force prediction model finally established provides a theoretical basis for optimizing composite needling process parameters,reducing fiber damage and equipment design.展开更多
在树脂传递模塑(Resin transfer molding,RTM)工艺中,边缘效应很容易导致制件产生空隙、干斑等缺陷,其根本原因是在纤维增强体和模具模腔之间的间隙区域树脂的流动阻力小,使得树脂在这一区域流动速度更快。基于达西定律并结合流体体积(V...在树脂传递模塑(Resin transfer molding,RTM)工艺中,边缘效应很容易导致制件产生空隙、干斑等缺陷,其根本原因是在纤维增强体和模具模腔之间的间隙区域树脂的流动阻力小,使得树脂在这一区域流动速度更快。基于达西定律并结合流体体积(Volume of Fluid,VOF)界面追踪方法建立了树脂在纤维增强体中的流动模型,开展RTM工艺边缘效应的数值模拟研究,模型可以准确模拟边缘效应的影响,同时研究树脂粘度及树脂注射压力等工艺参数对于流动时间的影响。研究结果可以对RTM工艺的改善优化提供帮助。展开更多
文摘The wide application of carbon fiber reinforced plastic(CFRP)components in modern aerospace manufacturing field puts high demands on the manufacturing process.Especially,the temperature increase during continuous milling process becomes a key factor affecting the performance of composites,and the high milling temperature induces a variety of processing defects.This paper obtained the temperature variation data during the end milling process of CFRP laminates through experiments.After data fitting,the data were transformed into a function of heat flux density varying with time.In the finite element analysis,a double-ellipsoid moving heat source model was introduced,and a moving heat source subrou-tine was written based on the time-varying function of heat flux density to more accurately describe the thermal effects dur-ing the milling process and simulate the changes in the temperature field during milling.The Hashin failure criterion is a-dopted as the basis of fiber and matrix failure,and the simulation results of the temperature field are input into the thermal-force coupling simulation model as the predefined field conditions for solving and analyzing by means of sequential thermal-force coupling,so as to establish a thermal-force coupling simulation and analysis model for milling processing of CFRP end faces.The model simulation results can provide a basis for exploring the damage evolution law of CFRP material under the influence of temperature.
文摘A staged modeling approach is proposed to divide the needling process into three stages:deformation,insertion and smoothness,and construct dynamic coupling models of rigid force,cutting force and friction force respectively.Based on the Boussinesq contact theory,the initial tip-fabric contact behavior is analyzed,combined with the elastic cutting theo-ry to quantify the fiber breakage mechanism,and the Winkler foundation model and LuGre dynamic friction model are used to characterize the friction properties of the needle shaft.It is shown that:the stiffness force in the deformation stage is af-fected by the geometrical parameters of the needle tip and the elastic modulus of the fabric;the cutting force in the insertion stage is closely related to the micro deformation of the fiber;and the dynamic friction behavior in the smooth stage can be depicted by the LuGre model with high accuracy.The complete needling force prediction model finally established provides a theoretical basis for optimizing composite needling process parameters,reducing fiber damage and equipment design.
文摘在树脂传递模塑(Resin transfer molding,RTM)工艺中,边缘效应很容易导致制件产生空隙、干斑等缺陷,其根本原因是在纤维增强体和模具模腔之间的间隙区域树脂的流动阻力小,使得树脂在这一区域流动速度更快。基于达西定律并结合流体体积(Volume of Fluid,VOF)界面追踪方法建立了树脂在纤维增强体中的流动模型,开展RTM工艺边缘效应的数值模拟研究,模型可以准确模拟边缘效应的影响,同时研究树脂粘度及树脂注射压力等工艺参数对于流动时间的影响。研究结果可以对RTM工艺的改善优化提供帮助。