Bacterial infection is a major threat to global public health,and can cause serious diseases such as bacterial skin infection and foodborne diseases.It is essential to develop a new method to rapidly diagnose clinical...Bacterial infection is a major threat to global public health,and can cause serious diseases such as bacterial skin infection and foodborne diseases.It is essential to develop a new method to rapidly diagnose clinical multiple bacterial infections and monitor food microbial contamination in production sites in real-time.In this work,we developed a 4-mercaptophenylboronic acid gold nanoparticles(4-MPBA-AuNPs)-functionalized hydrogel microneedle(MPBA-H-MN)for bacteria detection in skin interstitial fluid.MPBA-H-MN could conveniently capture and enrich a variety of bacteria within 5 min.Surface enhanced Raman spectroscopy(SERS)detection was then performed and combined with machine learning technology to distinguish and identify a variety of bacteria.Overall,the capture efficiency of this method exceeded 50%.In the concentration range of 1×10_(7) to 1×10^(10) colony-forming units/mL(CFU/mL),the corresponding SERS intensity showed a certain linear relationship with the bacterial concentration.Using random forest(RF)-based machine learning,bacteria were effectively distinguished with an accuracy of 97.87%.In addition,the harmless disposal of used MNs by photothermal ablation was convenient,environmentally friendly,and inexpensive.This technique provided a potential method for rapid and real-time diagnosis of multiple clinical bacterial infections and for monitoring microbial contamination of food in production sites.展开更多
The development of highly effective photosensitizers(PSs)based on supramolecular coordination complexes(SCCs)is highly appealing in supramolecular chemistry,materials science,and biology.SCCs offer promising platforms...The development of highly effective photosensitizers(PSs)based on supramolecular coordination complexes(SCCs)is highly appealing in supramolecular chemistry,materials science,and biology.SCCs offer promising platforms for incorporating multiple PSs and other functional units into their well-defined structures,allowing for precise control over the number and distribution of these components.In this study,we present an efficient and straightforward method for modulating the photosensitization process of PSs derived from a family of BF_(2)-chelated dipyrromethene(BODIPY)-containing Pt(Ⅱ)metallacycles by varying pre-designed Pt(Ⅱ)acceptors.By utilizing different Pt(Ⅱ)acceptors with varying Pt atom configurations and degrees ofπ-conjugated organic moieties,we observed tunable characteristics in the photosensitization process and singlet oxygen(^(1)O_(2))generation efficiency of these targeted metallacycles.Furthermore,we successfully conducted the visible-light-driven oxidative coupling of various amines to imines,catalyzed by the prepared metallacycle PSs.This study offers a novel approach for fabricating efficient PSs based on SCCs,featuring tunable photosensitization efficiency and excellent photocatalytic reactivity,while providing new insights into the preparation of effective PSs.展开更多
A Reconfigurable Intelligent Surface(RIS)can relay signals from the transmitter to the receiver.In this regard,RISs operate similarly to traditional relays.We design a Multiple-Input-Multiple-Output(MIMO)system with a...A Reconfigurable Intelligent Surface(RIS)can relay signals from the transmitter to the receiver.In this regard,RISs operate similarly to traditional relays.We design a Multiple-Input-Multiple-Output(MIMO)system with a hybrid network of RIS and Half-Duplex(HD)Amplify-and-Forward(AF)relay.We model the system’s signal propagation and propose a new algorithm to get the system’s Achievable Rate(AR)value.We complete simulations to evaluate the performance of the RIS and HD-AF relay hybrid network system compared to the system assisted by either the RIS or HD-AF relay.The simulations indicate that many factors can considerably influence the system performance.Selecting an optimal placement for the RIS and relay can result in the best performance for the RIS and HD-AF relay hybrid network system in situations where the direct link between the receiver and transmitter is absent.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.:82204340,82173954,and 82073815)the Natural Science Foundation of Jiangsu Province,China(Grant No.:BK20221048)+1 种基金the Jiangsu Funding Program for Excellent Postdoctoral Talent,China(Grant No.:2022ZB295)Key Laboratory Project of Quality Control of Chinese Herbal Medicines and Decoction Pieces,Gansu Institute for Drug Control,China(Grant No.:2024GSMPA-KL02).
文摘Bacterial infection is a major threat to global public health,and can cause serious diseases such as bacterial skin infection and foodborne diseases.It is essential to develop a new method to rapidly diagnose clinical multiple bacterial infections and monitor food microbial contamination in production sites in real-time.In this work,we developed a 4-mercaptophenylboronic acid gold nanoparticles(4-MPBA-AuNPs)-functionalized hydrogel microneedle(MPBA-H-MN)for bacteria detection in skin interstitial fluid.MPBA-H-MN could conveniently capture and enrich a variety of bacteria within 5 min.Surface enhanced Raman spectroscopy(SERS)detection was then performed and combined with machine learning technology to distinguish and identify a variety of bacteria.Overall,the capture efficiency of this method exceeded 50%.In the concentration range of 1×10_(7) to 1×10^(10) colony-forming units/mL(CFU/mL),the corresponding SERS intensity showed a certain linear relationship with the bacterial concentration.Using random forest(RF)-based machine learning,bacteria were effectively distinguished with an accuracy of 97.87%.In addition,the harmless disposal of used MNs by photothermal ablation was convenient,environmentally friendly,and inexpensive.This technique provided a potential method for rapid and real-time diagnosis of multiple clinical bacterial infections and for monitoring microbial contamination of food in production sites.
基金the financial support by the National Natural Science Foundation of China(Nos.22301081,22301269 and 22401096)China Postdoctoral Science Foundation(No.2023M731095)+4 种基金the Shanghai Frontiers Science Center for Molecular Intelligent Synthesesthe Fundamental Research Funds for the Central UniversitiesYoung Talent Fund of Association for Science and Technology in Shaanxi,China(No.20240628)Scientific Research Program Funded by Education Department of Shaanxi Provincial Government(No.23JK0752)Foundation of Yulin Association for Science and Technology(No.20230512)。
文摘The development of highly effective photosensitizers(PSs)based on supramolecular coordination complexes(SCCs)is highly appealing in supramolecular chemistry,materials science,and biology.SCCs offer promising platforms for incorporating multiple PSs and other functional units into their well-defined structures,allowing for precise control over the number and distribution of these components.In this study,we present an efficient and straightforward method for modulating the photosensitization process of PSs derived from a family of BF_(2)-chelated dipyrromethene(BODIPY)-containing Pt(Ⅱ)metallacycles by varying pre-designed Pt(Ⅱ)acceptors.By utilizing different Pt(Ⅱ)acceptors with varying Pt atom configurations and degrees ofπ-conjugated organic moieties,we observed tunable characteristics in the photosensitization process and singlet oxygen(^(1)O_(2))generation efficiency of these targeted metallacycles.Furthermore,we successfully conducted the visible-light-driven oxidative coupling of various amines to imines,catalyzed by the prepared metallacycle PSs.This study offers a novel approach for fabricating efficient PSs based on SCCs,featuring tunable photosensitization efficiency and excellent photocatalytic reactivity,while providing new insights into the preparation of effective PSs.
文摘A Reconfigurable Intelligent Surface(RIS)can relay signals from the transmitter to the receiver.In this regard,RISs operate similarly to traditional relays.We design a Multiple-Input-Multiple-Output(MIMO)system with a hybrid network of RIS and Half-Duplex(HD)Amplify-and-Forward(AF)relay.We model the system’s signal propagation and propose a new algorithm to get the system’s Achievable Rate(AR)value.We complete simulations to evaluate the performance of the RIS and HD-AF relay hybrid network system compared to the system assisted by either the RIS or HD-AF relay.The simulations indicate that many factors can considerably influence the system performance.Selecting an optimal placement for the RIS and relay can result in the best performance for the RIS and HD-AF relay hybrid network system in situations where the direct link between the receiver and transmitter is absent.