Tenebrionid beetles represent a crucial arthropod taxon in the Gobi desert ecosystems owing to their species richness and high biomass,both of which are essential for maintaining ecosystem health and stability.However...Tenebrionid beetles represent a crucial arthropod taxon in the Gobi desert ecosystems owing to their species richness and high biomass,both of which are essential for maintaining ecosystem health and stability.However,the spatiotemporal variations of tenebrionid beetle assemblages in the Gobi desert remain poorly understood.In this study,the monthly dynamics of tenebrionid beetles in the central part of the Hexi Corridor,Northwest China,a representative area of the Gobi desert ecosystems,were monitored using pitfall trapping during 2015-2020.The following results were showed:(1)monthly activity of tenebrionid beetles was observed from March to October,with monthly activity peaking in spring and summer,and monthly activity periods and peak of tenebrionid beetle species exhibited interspecific differences that varied from year to year;(2)spatial distribution of tenebrionid beetle community was influenced by structural factors.Specifically,at a spatial scale of 24.00 m,tenebrionid beetle community was strongly and positively correlated with the dominant species,with distinct spatial distribution patterns observed for Blaps gobiensis and Microdera kraatzi alashanica;(3)abundance of tenebrionid beetles was positively correlated with monthly mean precipitation and monthly mean temperature,whereas monthly abundance of B.gobiensis and M.kraatzi alashanica was positively correlated with monthly mean precipitation;and(4)the cover of Reaumuria soongarica(Pall.)Maxim.and Nitraria sphaerocarpa Maxim.had a positive influence on the number of tenebrionid beetles captured.In conclusion,monthly variation in precipitation significantly influences the community dynamic of tenebrionid beetles,with precipitation and shrub cover jointly determining the spatial distribution pattern of these beetles in the Gobi desert ecosystems.展开更多
针对电加热炉温度过程控制系统,利用基于dSPACE的电加热炉实时半实物仿真平台,将单神经元自适应PID算法应用于dSPACE温度控制系统中,并完成S函数的M EX C代码格式建模,在M atlab/Simulink中进行模块化设计,将实质性代码放在S函数源文件...针对电加热炉温度过程控制系统,利用基于dSPACE的电加热炉实时半实物仿真平台,将单神经元自适应PID算法应用于dSPACE温度控制系统中,并完成S函数的M EX C代码格式建模,在M atlab/Simulink中进行模块化设计,将实质性代码放在S函数源文件之外的C文件中,完成单神经元自适应PID算法的移植和维护,实现方便快速原型化设计。实验表明,在dSPACE实时系统中应用单神经元自适应PID算法后,既利用了神经网络充分逼近任意非线性函数的能力,又发挥了PID控制器结构简单、稳态精度高及动态响应速度快等优点,同时dSPACE平台大大缩短了研究周期,获得了良好的控制效果。展开更多
基金funded by the National Natural Science Foundation of China(U23A2063)the Gansu Province Top-notch Leading Talents Project(E339040101)the National Natural Science Foundation of China(41771290,42377043,41773086).
文摘Tenebrionid beetles represent a crucial arthropod taxon in the Gobi desert ecosystems owing to their species richness and high biomass,both of which are essential for maintaining ecosystem health and stability.However,the spatiotemporal variations of tenebrionid beetle assemblages in the Gobi desert remain poorly understood.In this study,the monthly dynamics of tenebrionid beetles in the central part of the Hexi Corridor,Northwest China,a representative area of the Gobi desert ecosystems,were monitored using pitfall trapping during 2015-2020.The following results were showed:(1)monthly activity of tenebrionid beetles was observed from March to October,with monthly activity peaking in spring and summer,and monthly activity periods and peak of tenebrionid beetle species exhibited interspecific differences that varied from year to year;(2)spatial distribution of tenebrionid beetle community was influenced by structural factors.Specifically,at a spatial scale of 24.00 m,tenebrionid beetle community was strongly and positively correlated with the dominant species,with distinct spatial distribution patterns observed for Blaps gobiensis and Microdera kraatzi alashanica;(3)abundance of tenebrionid beetles was positively correlated with monthly mean precipitation and monthly mean temperature,whereas monthly abundance of B.gobiensis and M.kraatzi alashanica was positively correlated with monthly mean precipitation;and(4)the cover of Reaumuria soongarica(Pall.)Maxim.and Nitraria sphaerocarpa Maxim.had a positive influence on the number of tenebrionid beetles captured.In conclusion,monthly variation in precipitation significantly influences the community dynamic of tenebrionid beetles,with precipitation and shrub cover jointly determining the spatial distribution pattern of these beetles in the Gobi desert ecosystems.
文摘针对电加热炉温度过程控制系统,利用基于dSPACE的电加热炉实时半实物仿真平台,将单神经元自适应PID算法应用于dSPACE温度控制系统中,并完成S函数的M EX C代码格式建模,在M atlab/Simulink中进行模块化设计,将实质性代码放在S函数源文件之外的C文件中,完成单神经元自适应PID算法的移植和维护,实现方便快速原型化设计。实验表明,在dSPACE实时系统中应用单神经元自适应PID算法后,既利用了神经网络充分逼近任意非线性函数的能力,又发挥了PID控制器结构简单、稳态精度高及动态响应速度快等优点,同时dSPACE平台大大缩短了研究周期,获得了良好的控制效果。