The influence of polyepoxysuccinic acid(PESA)on the solid phase products in hydrated Portland cement pastes was investigated by isothermal calorimetry,X-ray diffraction(XRD),^29Si and ^27Al nuclear magnetic resona...The influence of polyepoxysuccinic acid(PESA)on the solid phase products in hydrated Portland cement pastes was investigated by isothermal calorimetry,X-ray diffraction(XRD),^29Si and ^27Al nuclear magnetic resonance(NMR).The results indicated that PESA bonds Ca^2+ions in pore solution to prevent portlandite formation,and also combines with Ca^2+ions on the surface of silicate minerals to prolong the control time of phase boundary reaction process,leading to the retardation of silicate mineral hydration.Meanwhile,the interlayer Ca^2+ions in Jennite-like structure bridging PESA and C-S-H gels prevent silicate tetrahedron and aluminum tetrahedron from occupying the sites of bridging silicate tetrahedron,which causes the main existence of dimer in C-S-H structure,deceases the degree of Al^3+substituting for Si^4+and promotes the transformation from 4-coordination aluminum to 6-coordination aluminum.Furthermore,the-Ca^+chelating group from reacting PESA with Ca^2+ions combines easily with SO4^2-ions,resulting in transformation from ettringite,AFm to TAH(Third aluminum hydrate).However,with the higher addition of PESA,it will bridge the excess PESA by Ca^2+ions to form a new chelate with ladder-shaped double chains structure,which not only reduces the amount of PESA bonding Ca^2+ions,but also decreases its solidifying capability for SO4^2-ions,leading to the transformation from TAH to AFm or ettringite.Meanwhile,at later hydration,the inhibition effect of PESA on cement hydration is weakened,and the transformation degree from TAH to AFm is higher than that to AFt with the addition of PESA.展开更多
In view of the volume instability of steel slag aggregate leading to the quality problem of expansion damage in asphalt road construction,the 4.75-9.5 mm steel slag particles were treated by autoclaved carbonation tec...In view of the volume instability of steel slag aggregate leading to the quality problem of expansion damage in asphalt road construction,the 4.75-9.5 mm steel slag particles were treated by autoclaved carbonation technology,and the effects of the carbonation system(temperature and time)on the autoclaved pulverization rate,f-CaO content,and the relationship between them for the carbonated steel slag were investigated.In addition,the microstructure of the carbonated steel slag was analyzed by X-ray diffractometer(XRD),scanning electron microscope and energy dispersive spectrometer(SEM-EDS),metallographic microscope and X-ray fluorescence imaging spectrometer(XRF).The experimental results indicate that,under the initial CO_(2)pressure of 1.0 MPa,increasing the carbonation temperature leads to the increase in the crystal plane spacing of Ca(OH)_(2)that was generated by the hydration of minerals in steel slag,and promotes the transformation of carbonated CaCO_(3)from the orthorhombic system to the hexagonal system,resulting in the increase of the crystal planes spacing of them,meantime,accelerates the decomposition of RO phases and also the outward migration of Ca^(2+),Fe^(2+),and Mn^(2+)ions to cover and coat on the Si^(4+),Al^(3+)ions,and impels the formation of hydroxides such as Fe(OH)_(3)and the formation of carbonates such as Ca(Mg)CO_(3),FeCO_(3)and MnCO_(3).Carbonation at the temperature of 90℃for 3 h can reach the center of 4.75-9.5 mm steel slag particles.Meanwhile,the increase of temperature can promote the mineral reaction in steel slag,resulting in the fuzzy interface between mineral phases,increase of burrs,dispersion,crossover,reduction of grain size,and rearrangement of mineral particles.展开更多
The effect of curing regime on degree ofAl3+ substituting for Si^4+ (Al/Si ratio) in C-S-H gels of hardened Portland cement pastes was investigated by 29Si magic angel spinning (MAS) nuclear magnetic resonance ...The effect of curing regime on degree ofAl3+ substituting for Si^4+ (Al/Si ratio) in C-S-H gels of hardened Portland cement pastes was investigated by 29Si magic angel spinning (MAS) nuclear magnetic resonance (NMR) with deconvolution technique. The curing regimes included the constant temperature (20, 40, 60 and 80 ℃) and variable temperature (simulated internal temperature of mass concrete with 60 ℃ peak). The results indicate that constant temperature of 20 ℃ is beneficial to substitution ofAl3+ for Si4+, and AI/Si ratio changes to be steady after 180 d. The increase of Al/Si ratio at 40 ℃is less than that at 20℃ for 28 d. The other three regimes of high temperature increase Al/Si ratio only before 3 d, on the contrary to that from 3 to 28 d. However, the 20 ℃ curing stage from 28 to 180 d at variable temperature regime, is beneficial to the increase of AI/Si ratio which is still lower than that at constant temperature regime of 20 ℃ for the same age. A nonlinear relation exists between the Al/Si ratio and temperature variation or mean chain length (MCL) of C-S-H gels, furthermore, the amount ofAl3+ which can occupy the bridging tetrahedra sites in C-S-H structure is insufficient in hardened Portland cement pastes.展开更多
The effect of curing regime on the distribution ofAl3+ coordination in hardened cement pastes within 28 d were investigated by 29Si and 27Al magic angle spinning (MAS) nuclear magnetic resonance(NMR) with deconvo...The effect of curing regime on the distribution ofAl3+ coordination in hardened cement pastes within 28 d were investigated by 29Si and 27Al magic angle spinning (MAS) nuclear magnetic resonance(NMR) with deconvolution technique. The results indicate that the tetrahedral coordination Al3+ incorporated in C-S-H structure mainly originate from the AP+ incorporated in the alite and belite phases in the Portland cement. The curing regime of constant temperature of 20 ℃ is beneficial to the octahedral coordination Al3+ transforming to tetrahedral coordination AP+ incorporated in C-S-H structure. However, at curing regime of variable temperature, the temperature rising process is more advantageous to the transformation from ettringite to monosulphate, substitution of Al3+ for Si4+ in the C-S-H structure and the formation of the third aluminate hydrate (TAH) than that at constant temperature of 20 ℃. The high temperature of 60 ℃ in the holding temperature process promotes the decomposition of ettringite, and enhances the consumption of the Al3+ incorporated in C-S-H phases and the Al3+ in TAH for the monosulphate forming. The temperature decreasing promotes the transformation from monosulphate to ettringite, and increases the consumption of the Al3+ incorporated in C-S-H phases, and then increases the quantity of the TAH.展开更多
The thermodynamic stability of sulfate ions on synthesized calcium aluminosilicate hydrate(C-A-S-H) microstructure with different Ca/Si ratios and Al/Si ratios was investigated by XRD, SEM-EDS, 29 Si and 27 Al nucle...The thermodynamic stability of sulfate ions on synthesized calcium aluminosilicate hydrate(C-A-S-H) microstructure with different Ca/Si ratios and Al/Si ratios was investigated by XRD, SEM-EDS, 29 Si and 27 Al nuclear magnetic resonance(NMR) and thermodynamic modeling. The results indicate that sulfate attack leads to both decalcification and dealumination for C-A-S-H gels, and the amount of corrosion products(gypsum and ettringite) decreased gradually with decreasing Ca/Si ratios of C-A-S-H. Sulfate ions can also promote the polymerization degree of C-A-S-H gels, improving its resistance to sulfate attack. Moreover, the 4-coordination aluminum(Al[4]) in C-A-S-H, 5-coordination aluminum(Al[5]), 6-ccordination aluminum(Al[6]) in TAH(third aluminum hydrate) and Al[6] in monosulfate or C-A-H(calcium aluminate hydrate) can be transformed into Al[6] in ettringite by sulfate attack. Furthermore, through thermodynamic calculation, the decrease of Ca/Si ratios and increase of Al/Si ratios can improve the thermodynamic stability of C-A-S-H gels under sulfate attack, which agrees well with the experiment results.展开更多
The effect of two different curing regimes on the polymerization degree of C-S-H in hardened cement pastes within 28 d were investigated by measuring the chemical environments of 29Si with magic angle spinning (MAS)...The effect of two different curing regimes on the polymerization degree of C-S-H in hardened cement pastes within 28 d were investigated by measuring the chemical environments of 29Si with magic angle spinning (MAS) nuclear magnetic resonance (NMR) and by analyzing the 29Si NMR spectra with deconvolution technique. The experimental results indicate that, at curing regime of constant temperature of 20℃, the polymerization of C-S-H increases and then decreases with curing age, and the A1/Si ratio increases gradually with curing age, furthermore, the two non-bridging oxygen bonds of bridging silicate tetrahedra in C-S-H structure mainly bond to H+. At curing regime of variable temperature, the polymerization of C-S-H firstly increases then changes slightly and subsequently decreases with the temperature from low to high and then to low, and the A1/Si ratio firstly increases then keeps invariant and subsequently slightly decreases. Moreover, the temperature decreasing is advantageous for the Ca2+ to be bonded to the bridging silicate tetrahedra and entering into the interlayer of C-S-H structure. The polymerization of C-S-H at curing regime of variable temperature is higher than that cured at constant temperature, but the curing regime of constant temperature is more beneficial to the substitution of AP for Si4+ than that of variable temperature.展开更多
基金Funded by the Major State Basic Research Development Program of China(973 Program)(No.2015CB655101)Hubei Key Laboratory of Roadway Bridge and Structure Engineering(Wuhan University of Technology)(No.DQZDJJ201504)+2 种基金State Key Laboratory of High Performance Civil Engineering Materials(No.2015CEM006)Natural Science Foundation of Hebei Province(No.E2016209283)Science and Technology Program of Hebei Province(No.16273706D)
文摘The influence of polyepoxysuccinic acid(PESA)on the solid phase products in hydrated Portland cement pastes was investigated by isothermal calorimetry,X-ray diffraction(XRD),^29Si and ^27Al nuclear magnetic resonance(NMR).The results indicated that PESA bonds Ca^2+ions in pore solution to prevent portlandite formation,and also combines with Ca^2+ions on the surface of silicate minerals to prolong the control time of phase boundary reaction process,leading to the retardation of silicate mineral hydration.Meanwhile,the interlayer Ca^2+ions in Jennite-like structure bridging PESA and C-S-H gels prevent silicate tetrahedron and aluminum tetrahedron from occupying the sites of bridging silicate tetrahedron,which causes the main existence of dimer in C-S-H structure,deceases the degree of Al^3+substituting for Si^4+and promotes the transformation from 4-coordination aluminum to 6-coordination aluminum.Furthermore,the-Ca^+chelating group from reacting PESA with Ca^2+ions combines easily with SO4^2-ions,resulting in transformation from ettringite,AFm to TAH(Third aluminum hydrate).However,with the higher addition of PESA,it will bridge the excess PESA by Ca^2+ions to form a new chelate with ladder-shaped double chains structure,which not only reduces the amount of PESA bonding Ca^2+ions,but also decreases its solidifying capability for SO4^2-ions,leading to the transformation from TAH to AFm or ettringite.Meanwhile,at later hydration,the inhibition effect of PESA on cement hydration is weakened,and the transformation degree from TAH to AFm is higher than that to AFt with the addition of PESA.
基金Funded by the Natural Science Foundation of Hebei Province(No.E2020209010)the Science and Technology Plan Project of Tangshan(No.19150225E)the Key R&D Projects of North China University of Science and Technology(No.ZD-ST-202301)。
文摘In view of the volume instability of steel slag aggregate leading to the quality problem of expansion damage in asphalt road construction,the 4.75-9.5 mm steel slag particles were treated by autoclaved carbonation technology,and the effects of the carbonation system(temperature and time)on the autoclaved pulverization rate,f-CaO content,and the relationship between them for the carbonated steel slag were investigated.In addition,the microstructure of the carbonated steel slag was analyzed by X-ray diffractometer(XRD),scanning electron microscope and energy dispersive spectrometer(SEM-EDS),metallographic microscope and X-ray fluorescence imaging spectrometer(XRF).The experimental results indicate that,under the initial CO_(2)pressure of 1.0 MPa,increasing the carbonation temperature leads to the increase in the crystal plane spacing of Ca(OH)_(2)that was generated by the hydration of minerals in steel slag,and promotes the transformation of carbonated CaCO_(3)from the orthorhombic system to the hexagonal system,resulting in the increase of the crystal planes spacing of them,meantime,accelerates the decomposition of RO phases and also the outward migration of Ca^(2+),Fe^(2+),and Mn^(2+)ions to cover and coat on the Si^(4+),Al^(3+)ions,and impels the formation of hydroxides such as Fe(OH)_(3)and the formation of carbonates such as Ca(Mg)CO_(3),FeCO_(3)and MnCO_(3).Carbonation at the temperature of 90℃for 3 h can reach the center of 4.75-9.5 mm steel slag particles.Meanwhile,the increase of temperature can promote the mineral reaction in steel slag,resulting in the fuzzy interface between mineral phases,increase of burrs,dispersion,crossover,reduction of grain size,and rearrangement of mineral particles.
基金Funded by the Major State Basic Research Development Program of China(973 Program)(No.2009CB623201)National Natural Science Foundation of China(No.51302070)
文摘The effect of curing regime on degree ofAl3+ substituting for Si^4+ (Al/Si ratio) in C-S-H gels of hardened Portland cement pastes was investigated by 29Si magic angel spinning (MAS) nuclear magnetic resonance (NMR) with deconvolution technique. The curing regimes included the constant temperature (20, 40, 60 and 80 ℃) and variable temperature (simulated internal temperature of mass concrete with 60 ℃ peak). The results indicate that constant temperature of 20 ℃ is beneficial to substitution ofAl3+ for Si4+, and AI/Si ratio changes to be steady after 180 d. The increase of Al/Si ratio at 40 ℃is less than that at 20℃ for 28 d. The other three regimes of high temperature increase Al/Si ratio only before 3 d, on the contrary to that from 3 to 28 d. However, the 20 ℃ curing stage from 28 to 180 d at variable temperature regime, is beneficial to the increase of AI/Si ratio which is still lower than that at constant temperature regime of 20 ℃ for the same age. A nonlinear relation exists between the Al/Si ratio and temperature variation or mean chain length (MCL) of C-S-H gels, furthermore, the amount ofAl3+ which can occupy the bridging tetrahedra sites in C-S-H structure is insufficient in hardened Portland cement pastes.
基金Funded by the Major State Basic Research Development Program of China(973 Program)(No.2009CB623201)
文摘The effect of curing regime on the distribution ofAl3+ coordination in hardened cement pastes within 28 d were investigated by 29Si and 27Al magic angle spinning (MAS) nuclear magnetic resonance(NMR) with deconvolution technique. The results indicate that the tetrahedral coordination Al3+ incorporated in C-S-H structure mainly originate from the AP+ incorporated in the alite and belite phases in the Portland cement. The curing regime of constant temperature of 20 ℃ is beneficial to the octahedral coordination Al3+ transforming to tetrahedral coordination AP+ incorporated in C-S-H structure. However, at curing regime of variable temperature, the temperature rising process is more advantageous to the transformation from ettringite to monosulphate, substitution of Al3+ for Si4+ in the C-S-H structure and the formation of the third aluminate hydrate (TAH) than that at constant temperature of 20 ℃. The high temperature of 60 ℃ in the holding temperature process promotes the decomposition of ettringite, and enhances the consumption of the Al3+ incorporated in C-S-H phases and the Al3+ in TAH for the monosulphate forming. The temperature decreasing promotes the transformation from monosulphate to ettringite, and increases the consumption of the Al3+ incorporated in C-S-H phases, and then increases the quantity of the TAH.
基金Funded by Anhui Key Laboratory of Advanced Building Materials,Anhui Jianzhu University(No.JZCL201602KF)Major State Basic Research Development Program of China(973 Program)(No.2015CB655101)+2 种基金State Key Laboratory of High Performance Civil Engineering Materials(No.2015CEM005)Natural Science Foundation of Hebei Province(No.E2016209283)Hubei Key Laboratory of Roadway Bridge and Structure Engineering(Wuhan University of Technology)(No.DQZDJJ201504)
文摘The thermodynamic stability of sulfate ions on synthesized calcium aluminosilicate hydrate(C-A-S-H) microstructure with different Ca/Si ratios and Al/Si ratios was investigated by XRD, SEM-EDS, 29 Si and 27 Al nuclear magnetic resonance(NMR) and thermodynamic modeling. The results indicate that sulfate attack leads to both decalcification and dealumination for C-A-S-H gels, and the amount of corrosion products(gypsum and ettringite) decreased gradually with decreasing Ca/Si ratios of C-A-S-H. Sulfate ions can also promote the polymerization degree of C-A-S-H gels, improving its resistance to sulfate attack. Moreover, the 4-coordination aluminum(Al[4]) in C-A-S-H, 5-coordination aluminum(Al[5]), 6-ccordination aluminum(Al[6]) in TAH(third aluminum hydrate) and Al[6] in monosulfate or C-A-H(calcium aluminate hydrate) can be transformed into Al[6] in ettringite by sulfate attack. Furthermore, through thermodynamic calculation, the decrease of Ca/Si ratios and increase of Al/Si ratios can improve the thermodynamic stability of C-A-S-H gels under sulfate attack, which agrees well with the experiment results.
基金Funded by the Major State Basic Research Development Program of China(973Program)(No.2009CB623201)
文摘The effect of two different curing regimes on the polymerization degree of C-S-H in hardened cement pastes within 28 d were investigated by measuring the chemical environments of 29Si with magic angle spinning (MAS) nuclear magnetic resonance (NMR) and by analyzing the 29Si NMR spectra with deconvolution technique. The experimental results indicate that, at curing regime of constant temperature of 20℃, the polymerization of C-S-H increases and then decreases with curing age, and the A1/Si ratio increases gradually with curing age, furthermore, the two non-bridging oxygen bonds of bridging silicate tetrahedra in C-S-H structure mainly bond to H+. At curing regime of variable temperature, the polymerization of C-S-H firstly increases then changes slightly and subsequently decreases with the temperature from low to high and then to low, and the A1/Si ratio firstly increases then keeps invariant and subsequently slightly decreases. Moreover, the temperature decreasing is advantageous for the Ca2+ to be bonded to the bridging silicate tetrahedra and entering into the interlayer of C-S-H structure. The polymerization of C-S-H at curing regime of variable temperature is higher than that cured at constant temperature, but the curing regime of constant temperature is more beneficial to the substitution of AP for Si4+ than that of variable temperature.