In this paper,we present a high peak power passively Q-switched intracavity frequency-doubled green laser based on an efficient LED-pumped Nd:YAG dual-rod laser module.In quasi-continuous wave(QCW)running operation,th...In this paper,we present a high peak power passively Q-switched intracavity frequency-doubled green laser based on an efficient LED-pumped Nd:YAG dual-rod laser module.In quasi-continuous wave(QCW)running operation,the average output power of the fundamental laser at 1064 nm reaches as high as 20.98 W at a repetition rate of 50 Hz with a maximum single pulse energy of 419.6 mJ,corresponding to a maximum optical conversion efficiency of 38.8%and a slope efficiency of 41%.展开更多
The integration of artificial intelligence(AI)is fundamentally reshaping the scientific research,giving rise to a new era of discovery and innovation.This paper explores this transformative shift,introducing an innova...The integration of artificial intelligence(AI)is fundamentally reshaping the scientific research,giving rise to a new era of discovery and innovation.This paper explores this transformative shift,introducing an innovative concept of the“AI-Driven Research Ecosystem”,a dynamic and collaborative research environment.Within this ecosystem,we focus on the unification of human-AI collaboration models and the emerging new research thinking paradigms.We analyze the multifaceted roles of AI within the research lifecycle,spanning from a passive tool to an active assistant and autonomous participants,and categorize these interactions into distinct human-AI collaboration models.Furthermore,we examine how the pervasive involvement of AI necessitates an evolution in human research thinking,emphasizing the significant roles of critical,creative,and computational thinking.Through a review of existing literature and illustrative case studies,this paper provides a comprehensive overview of the AI-driven research ecosystem,highlighting its potential for transforming scientific research.Our findings advance the current understanding of AI’s multiple roles in research and underscore its capacity to revolutionize both knowledge discovery and collaborative innovation,paving the way for a more integrated and impactful research paradigm.展开更多
With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directi...With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directional entropic scale is used to measure the anisotropy of spatial order in different directions.Compared with the traditional connectivity indexes based on the statistics of fracture geometry,the directional entropic scale is capable to quantify the anisotropy of connectivity and hydraulic conductivity in heterogeneous 3D fracture networks.According to the numerical analysis of directional entrogram and fluid flow in a number of the 3D fracture networks,the hydraulic conductivities and entropic scales in different directions both increase with spatial order(i.e.,trace length decreasing and spacing increasing)and are independent of the dip angle.As a result,the nonlinear correlation between the hydraulic conductivities and entropic scales from different directions can be unified as quadratic polynomial function,which can shed light on the anisotropic effect of spatial order and global entropy on the heterogeneous hydraulic behaviors.展开更多
Underground liquified natural gas(LNG)storage is essential in guaranteeing national energy strategic reserves,and its construction is being accelerated.The stability of surrounding rock of underground LNG storage cave...Underground liquified natural gas(LNG)storage is essential in guaranteeing national energy strategic reserves,and its construction is being accelerated.The stability of surrounding rock of underground LNG storage caverns under stress-low temperature coupling effect is the key factor determining the feasibility of LNG storage.First,a mathematical model used for controlling the stress-low temperature coupling and the processes of rock damage evolution is given,followed by a 2-D numerical execution process of the mathematical model mentioned above described based on Comsol Multiphysics and Matlab code.Finally,a series of 2-D simulations are performed to study the influence of LNG storage cavern layout,burial depth,temperature and internal pressure on the stability of surrounding rocks of these underground storage caverns.The results indicate that all the factors mentioned above affect the evolution of deformation and plastic zone of surrounding rocks.The research results contribute to the engineering design of underground LNG storage caverns.展开更多
To better understand the failure behaviours and strength of bolt-reinforced blocky rocks,large scale extensive laboratory experiments are carried out on blocky rock-like specimens with and without rockbolt reinforceme...To better understand the failure behaviours and strength of bolt-reinforced blocky rocks,large scale extensive laboratory experiments are carried out on blocky rock-like specimens with and without rockbolt reinforcement.The results show that both shear failure and tensile failure along joint surfaces are observed but the shear failure is a main controlling factor for the peak strength of the rock mass with and without rockbolts.The rockbolts are necked and shear deformation simultaneously happens in bolt reinforced rock specimens.As the joint dip angle increases,the joint shear failure becomes more dominant.The number of rockbolts has a significant impact on the peak strain and uniaxial compressive strength(UCS),but little influence on the deformation modulus of the rock mass.Using the Winkler beam model to represent the rockbolt behaviours,an analytical model for the prediction of the strength of boltreinforced blocky rocks is proposed.Good agreement between the UCS values predicted by proposed model and obtained from experiments suggest an encouraging performance of the proposed model.In addition,the performance of the proposed model is further assessed using published results in the literature,indicating the proposed model can be used effectively in the prediction of UCS of bolt-reinforced blocky rocks.展开更多
The effects of cyclic heat treatments on the fracture shear behaviors are rarely reported.To enhance our understanding,granite fractures having almost the same roughness were first exposed to cyclic heating at 400C an...The effects of cyclic heat treatments on the fracture shear behaviors are rarely reported.To enhance our understanding,granite fractures having almost the same roughness were first exposed to cyclic heating at 400C and air-cooling treatments,and then direct shear tests were performed under four levels of normal loading.The influences of thermal cycles on roughness degradation and shear properties are analyzed.The roughness degradation in the joint roughness coefficient and the three-dimensional(3D)roughness metric exhibit linear increasing tendency with increasing thermal cycles.Typical fracture shear properties,including cohesion and friction angle,peak and residual shear strength,peak and residual shear displacement,and initial and secant shear stiffness,fluctuate generally within the first 10 thermal cycles,followed by gradual decreasing tendencies.The thermal effect on the shear properties become weaker as the number of heat treatments increases from 10 to 80.Nonuniform expansion and shrinkage of mineral grains after thermal treatments produce micro-cracks within the rock matrix and on the rock surface,suggesting that asperities are easier to be sheared-off.Thermal alteration in fracture peak-shear strength could be attributed to the deterioration in rock strengths and the mismatch in opposing fracture walls.The observations would provide better insights into rock friction after high temperatures in geothermal energy exploitation.展开更多
Cases of simultaneous inrush of high-temperature water and harmful gases are infrequently reported in areas without geothermal anomalies,hydrocarbon source rock,or coal measures.For this,we investigated the origin,dev...Cases of simultaneous inrush of high-temperature water and harmful gases are infrequently reported in areas without geothermal anomalies,hydrocarbon source rock,or coal measures.For this,we investigated the origin,development,and formation of the high-temperature water and harmful gases that rushed into Bangfu tunnel,Southwest China.During excavation of the Bangfu tunnel through the F1-2 fault in sandstone,a significant incident occurred involving a sudden influx of high-temperature water(45.4℃)of NaeHCO_(3)type and harmful gases(CO_(2),H2S).An extensive geological examination uncovered a fault network extending from the crust to the mantle in the tunnel site area.The site features a substantial presence of both surface water and groundwater.Furthermore,within the middle crust at depths ranging from 19 km to 23 km,there are high-temperature ductile melts enriched with fluids and gases.Monitoring and experiments conducted on the harmful gases reveal that the primary source is identified in the crust,with the mantle source being secondary,followed by the atmospheric source being a minimal contribution.The hydrochemical and isotopic composition characteristics of the hightemperature rushed water indicate its evolution was formed through the infiltration of atmospheric precipitation from cold groundwater of the CaeHCO_(3)type.The mechanism underlying the formation of the inrush high-temperature water and harmful gases can be outlined as follows.The fault network,spanning from the crust to the mantle,serves as a migration pathway for the inflow substances.Mantlederived volatiles and high-temperature melts make heat energy facilitate the inrush activity,while groundwater contributes to heat transfer and acts as a medium for gas transport.As mantle-derived volatiles migrate towards the surface through the fault network,they mix with high-temperature melts and crust-derived gases,forming a crust-mantle mixed gas.Through processes such as deep hydrothermal circulation,shallow hydrothermal circulation,water/rock reaction,near-surface mixing,and dilution,CaeHCO_(3)type cold groundwater transforms into high-temperature water of NaeHCO_(3)type.The methodologies and findings of our research offer insights into the route selection,investigation,and construction of mountain tunneling projects under similar geological conditions.展开更多
Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual conne...Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual connections of large-scale fractures.Notably,this model efficiently manages over 20,000 fractures without necessitating adjustments to the DFN geometry.All geometric analyses,such as identifying connected fractures,dividing the two-dimensional domain into closed loops,triangulating arbitrary loops,and refining triangular elements,are fully automated.The analysis processes are comprehensively introduced,and core algorithms,along with their pseudo-codes,are outlined and explained to assist readers in their programming endeavors.The accuracy of geometric analyses is validated through topological graphs representing the connection relationships between fractures.In practical application,the proposed model is employed to assess the water-sealing effectiveness of an underground storage cavern project.The analysis results indicate that the existing design scheme can effectively prevent the stored oil from leaking in the presence of both dense and sparse fractures.Furthermore,following extensive modification and optimization,the scale and precision of model computation suggest that the proposed model and developed codes can meet the requirements of engineering applications.展开更多
An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented.The main objective of this study was to verify the possibility of using SiC powder instead of min...An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented.The main objective of this study was to verify the possibility of using SiC powder instead of mineral powder as the thermal conductive filler to prepare a new type of asphalt concrete and improve the efficiency of electrothermal snow and ice melting systems accordingly.The thermal conductivity of asphalt concrete prepared with different thermally conductive fillers was tested by a transient plane source method,and the related performances were measured.Then the temperature rise rate and surface temperature were studied through field heating tests.Finally,the actual ice melting efficiency of the thermally conductive asphalt concrete was evaluated using an effective electrothermal system.As shown by the experimental results,the composite made of SiC powder and carbon fiber has a high thermal conductivity.When SiC replaces mineral powder,the thermal conductivity of the asphalt mixture increases first and then decreases with the increase of carbon fiber content.In the present study,in particular,the thermal conductivity attained a peak when the carbon fiber content was 0.2%of the aggregate mass.展开更多
BACKGROUND Malancao(MLC)is a traditional Chinese medicine with a long history of utilization in treating ulcerative colitis(UC).Nevertheless,the precise molecular mechanisms underlying its efficacy remain elusive.This...BACKGROUND Malancao(MLC)is a traditional Chinese medicine with a long history of utilization in treating ulcerative colitis(UC).Nevertheless,the precise molecular mechanisms underlying its efficacy remain elusive.This study leveraged ultrahigh-performance liquid chromatography coupled with exactive mass spectrometry(UHPLC-QE-MS),network pharmacology,molecular docking(MD),and gene microarray analysis to discern the bioactive constituents and the potential mechanism of action of MLC in UC management.AIM To determine the ingredients related to MLC for treatment of UC using multiple databases to obtain potential targets for fishing.METHODS This research employs UHPLC-QE-MS for the identification of bioactive compounds present in MLC plant samples.Furthermore,the study integrates the identified MLC compound-related targets with publicly available databases to elucidate common drug disease targets.Additionally,the R programming language is utilized to predict the central targets and molecular pathways that MLC may impact in the treatment of UC.Finally,MD are conducted using AutoDock Vina software to assess the affinity of bioactive components to the main targets and confirm their therapeutic potential.RESULTS Firstly,through a comprehensive analysis of UHPLC-QE-MS data and public database resources,we identified 146 drug-disease cross targets related to 11 bioactive components.The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis highlighted that common disease drug targets are primarily involved in oxidative stress management,lipid metabolism,atherosclerosis,and other processes.They also affect AGE-RAGE and apoptosis signaling pathways.Secondly,by analyzing the differences in diseases,we identified key research targets.These core targets are related to 11 active substances,including active ingredients such as quercetin and luteolin.Finally,MD analysis revealed the stability of compound-protein binding,particularly between JUNLuteolin,JUN-Quercetin,HSP90AA1-Wogonin,and HSP90AA1-Rhein.Therefore,this suggests that MLC may help alleviate intestinal inflammation in UC,restore abnormal lipid accumulation,and regulate the expression levels of core proteins in the intestine.CONCLUSION The utilization of MLC has demonstrated notable therapeutic efficacy in the management of UC by means of the compound target interaction pathway.The amalgamation of botanical resources,metabolomics,natural products,MD,and gene chip technology presents a propitious methodology for investigating therapeutic targets of herbal medicines and discerning novel bioactive constituents.展开更多
Genital size is a crucial index for the assessment of male sexual development, as abnormal penile or testicular size may be the earliest visible clinical manifestation of some diseases. However, there is a lack of dat...Genital size is a crucial index for the assessment of male sexual development, as abnormal penile or testicular size may be the earliest visible clinical manifestation of some diseases. However, there is a lack of data regarding penile and testicular size measurements for Chinese boys at all stages of childhood and puberty. This cross-sectional study aimed to develop appropriate growth curves and charts for male external genitalia among children and adolescents aged 0-17 years in Chongqing, China. A total of 2974 boys were enrolled in the present study. Penile length was measured using a rigid ruler, penile diameter was measured using a pachymeter, and testicular volume was determined using a Prader orchidometer. Age-specific percentile curves for penile length, penile diameter, and testicular volume were drawn using the generalized additive models for location, scale, and shape. Very similar growth curves were found for both penile length and penile diameter. Both of them gradually rose to 10 years of age and then sharply increased from 11 to 15 years of age. However, testicular volume changed little before the age of 10 years. This study contributes to the literature covering age-specific growth curve and charts about male external genitalia in Chinese children and adolescents. These age-related values are valuable in evaluating the growth and development status of male external genitalia and could be helpful in diagnosing genital disorders.展开更多
基金supported by the Nanjing University of Posts and Telecommunications Foundation,China(Grant Nos.JUH219002 and JUH219007)the Key R&D Program of Shandong Province,China(Grant No.2021CXGC010202)。
文摘In this paper,we present a high peak power passively Q-switched intracavity frequency-doubled green laser based on an efficient LED-pumped Nd:YAG dual-rod laser module.In quasi-continuous wave(QCW)running operation,the average output power of the fundamental laser at 1064 nm reaches as high as 20.98 W at a repetition rate of 50 Hz with a maximum single pulse energy of 419.6 mJ,corresponding to a maximum optical conversion efficiency of 38.8%and a slope efficiency of 41%.
基金funded by the General Program of the National Natural Science Foundation of China grant number 62277022.
文摘The integration of artificial intelligence(AI)is fundamentally reshaping the scientific research,giving rise to a new era of discovery and innovation.This paper explores this transformative shift,introducing an innovative concept of the“AI-Driven Research Ecosystem”,a dynamic and collaborative research environment.Within this ecosystem,we focus on the unification of human-AI collaboration models and the emerging new research thinking paradigms.We analyze the multifaceted roles of AI within the research lifecycle,spanning from a passive tool to an active assistant and autonomous participants,and categorize these interactions into distinct human-AI collaboration models.Furthermore,we examine how the pervasive involvement of AI necessitates an evolution in human research thinking,emphasizing the significant roles of critical,creative,and computational thinking.Through a review of existing literature and illustrative case studies,this paper provides a comprehensive overview of the AI-driven research ecosystem,highlighting its potential for transforming scientific research.Our findings advance the current understanding of AI’s multiple roles in research and underscore its capacity to revolutionize both knowledge discovery and collaborative innovation,paving the way for a more integrated and impactful research paradigm.
基金supported by the National Natural Science Foundation of China(Nos.42077243,52209148,and 52079062).
文摘With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directional entropic scale is used to measure the anisotropy of spatial order in different directions.Compared with the traditional connectivity indexes based on the statistics of fracture geometry,the directional entropic scale is capable to quantify the anisotropy of connectivity and hydraulic conductivity in heterogeneous 3D fracture networks.According to the numerical analysis of directional entrogram and fluid flow in a number of the 3D fracture networks,the hydraulic conductivities and entropic scales in different directions both increase with spatial order(i.e.,trace length decreasing and spacing increasing)and are independent of the dip angle.As a result,the nonlinear correlation between the hydraulic conductivities and entropic scales from different directions can be unified as quadratic polynomial function,which can shed light on the anisotropic effect of spatial order and global entropy on the heterogeneous hydraulic behaviors.
基金funded by the Major science and technology project of CNOOC(KJZX-2022-12-XNY-0803).
文摘Underground liquified natural gas(LNG)storage is essential in guaranteeing national energy strategic reserves,and its construction is being accelerated.The stability of surrounding rock of underground LNG storage caverns under stress-low temperature coupling effect is the key factor determining the feasibility of LNG storage.First,a mathematical model used for controlling the stress-low temperature coupling and the processes of rock damage evolution is given,followed by a 2-D numerical execution process of the mathematical model mentioned above described based on Comsol Multiphysics and Matlab code.Finally,a series of 2-D simulations are performed to study the influence of LNG storage cavern layout,burial depth,temperature and internal pressure on the stability of surrounding rocks of these underground storage caverns.The results indicate that all the factors mentioned above affect the evolution of deformation and plastic zone of surrounding rocks.The research results contribute to the engineering design of underground LNG storage caverns.
基金supported by the National Key Research and Development Projects of China(No.2021YFB2600402)National Natural Science Foundation of China(Nos.52209148 and 52374119)+1 种基金the opening fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(No.SKLGME023023)the opening fund of Key Laboratory of Water Management and Water Security for Yellow River Basin,Ministry of Water Resources(No.2023-SYSJJ-02)。
文摘To better understand the failure behaviours and strength of bolt-reinforced blocky rocks,large scale extensive laboratory experiments are carried out on blocky rock-like specimens with and without rockbolt reinforcement.The results show that both shear failure and tensile failure along joint surfaces are observed but the shear failure is a main controlling factor for the peak strength of the rock mass with and without rockbolts.The rockbolts are necked and shear deformation simultaneously happens in bolt reinforced rock specimens.As the joint dip angle increases,the joint shear failure becomes more dominant.The number of rockbolts has a significant impact on the peak strain and uniaxial compressive strength(UCS),but little influence on the deformation modulus of the rock mass.Using the Winkler beam model to represent the rockbolt behaviours,an analytical model for the prediction of the strength of boltreinforced blocky rocks is proposed.Good agreement between the UCS values predicted by proposed model and obtained from experiments suggest an encouraging performance of the proposed model.In addition,the performance of the proposed model is further assessed using published results in the literature,indicating the proposed model can be used effectively in the prediction of UCS of bolt-reinforced blocky rocks.
基金supports from the Natural Science Foundation of China(Nos.42177165 and 42277173)the National Key Research and Development Projects of China(No.2021YFB2600402)。
文摘The effects of cyclic heat treatments on the fracture shear behaviors are rarely reported.To enhance our understanding,granite fractures having almost the same roughness were first exposed to cyclic heating at 400C and air-cooling treatments,and then direct shear tests were performed under four levels of normal loading.The influences of thermal cycles on roughness degradation and shear properties are analyzed.The roughness degradation in the joint roughness coefficient and the three-dimensional(3D)roughness metric exhibit linear increasing tendency with increasing thermal cycles.Typical fracture shear properties,including cohesion and friction angle,peak and residual shear strength,peak and residual shear displacement,and initial and secant shear stiffness,fluctuate generally within the first 10 thermal cycles,followed by gradual decreasing tendencies.The thermal effect on the shear properties become weaker as the number of heat treatments increases from 10 to 80.Nonuniform expansion and shrinkage of mineral grains after thermal treatments produce micro-cracks within the rock matrix and on the rock surface,suggesting that asperities are easier to be sheared-off.Thermal alteration in fracture peak-shear strength could be attributed to the deterioration in rock strengths and the mismatch in opposing fracture walls.The observations would provide better insights into rock friction after high temperatures in geothermal energy exploitation.
基金supported by the National Natural Science Foundation of China(Grant No.42277173)National Key Research and Development projects of China(Grant No.2021YFB2600402)+1 种基金the Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education(Grant No.GLAB2022ZR03)the Fundamental Research Funds for the Central Universities.
文摘Cases of simultaneous inrush of high-temperature water and harmful gases are infrequently reported in areas without geothermal anomalies,hydrocarbon source rock,or coal measures.For this,we investigated the origin,development,and formation of the high-temperature water and harmful gases that rushed into Bangfu tunnel,Southwest China.During excavation of the Bangfu tunnel through the F1-2 fault in sandstone,a significant incident occurred involving a sudden influx of high-temperature water(45.4℃)of NaeHCO_(3)type and harmful gases(CO_(2),H2S).An extensive geological examination uncovered a fault network extending from the crust to the mantle in the tunnel site area.The site features a substantial presence of both surface water and groundwater.Furthermore,within the middle crust at depths ranging from 19 km to 23 km,there are high-temperature ductile melts enriched with fluids and gases.Monitoring and experiments conducted on the harmful gases reveal that the primary source is identified in the crust,with the mantle source being secondary,followed by the atmospheric source being a minimal contribution.The hydrochemical and isotopic composition characteristics of the hightemperature rushed water indicate its evolution was formed through the infiltration of atmospheric precipitation from cold groundwater of the CaeHCO_(3)type.The mechanism underlying the formation of the inrush high-temperature water and harmful gases can be outlined as follows.The fault network,spanning from the crust to the mantle,serves as a migration pathway for the inflow substances.Mantlederived volatiles and high-temperature melts make heat energy facilitate the inrush activity,while groundwater contributes to heat transfer and acts as a medium for gas transport.As mantle-derived volatiles migrate towards the surface through the fault network,they mix with high-temperature melts and crust-derived gases,forming a crust-mantle mixed gas.Through processes such as deep hydrothermal circulation,shallow hydrothermal circulation,water/rock reaction,near-surface mixing,and dilution,CaeHCO_(3)type cold groundwater transforms into high-temperature water of NaeHCO_(3)type.The methodologies and findings of our research offer insights into the route selection,investigation,and construction of mountain tunneling projects under similar geological conditions.
基金sponsored by the General Program of the National Natural Science Foundation of China(Grant Nos.52079129 and 52209148)the Hubei Provincial General Fund,China(Grant No.2023AFB567)。
文摘Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual connections of large-scale fractures.Notably,this model efficiently manages over 20,000 fractures without necessitating adjustments to the DFN geometry.All geometric analyses,such as identifying connected fractures,dividing the two-dimensional domain into closed loops,triangulating arbitrary loops,and refining triangular elements,are fully automated.The analysis processes are comprehensively introduced,and core algorithms,along with their pseudo-codes,are outlined and explained to assist readers in their programming endeavors.The accuracy of geometric analyses is validated through topological graphs representing the connection relationships between fractures.In practical application,the proposed model is employed to assess the water-sealing effectiveness of an underground storage cavern project.The analysis results indicate that the existing design scheme can effectively prevent the stored oil from leaking in the presence of both dense and sparse fractures.Furthermore,following extensive modification and optimization,the scale and precision of model computation suggest that the proposed model and developed codes can meet the requirements of engineering applications.
基金the support of the Joint Funds of the Natural Science Foundation of Hubei Province(2022CFD130)the Technology Innovation Project of Hubei Province(Key Program,No.2023BEB010)+1 种基金the Key Research and Development Program of Hubei Province(No.2021BGD015)the Knowledge Innovation Project of Wuhan(No.2022010801010259).
文摘An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented.The main objective of this study was to verify the possibility of using SiC powder instead of mineral powder as the thermal conductive filler to prepare a new type of asphalt concrete and improve the efficiency of electrothermal snow and ice melting systems accordingly.The thermal conductivity of asphalt concrete prepared with different thermally conductive fillers was tested by a transient plane source method,and the related performances were measured.Then the temperature rise rate and surface temperature were studied through field heating tests.Finally,the actual ice melting efficiency of the thermally conductive asphalt concrete was evaluated using an effective electrothermal system.As shown by the experimental results,the composite made of SiC powder and carbon fiber has a high thermal conductivity.When SiC replaces mineral powder,the thermal conductivity of the asphalt mixture increases first and then decreases with the increase of carbon fiber content.In the present study,in particular,the thermal conductivity attained a peak when the carbon fiber content was 0.2%of the aggregate mass.
基金Supported by The Chongqing Science and Health Joint Chinese Medicine Technology Innovation and Application Development Project,No.2022MSXM209.
文摘BACKGROUND Malancao(MLC)is a traditional Chinese medicine with a long history of utilization in treating ulcerative colitis(UC).Nevertheless,the precise molecular mechanisms underlying its efficacy remain elusive.This study leveraged ultrahigh-performance liquid chromatography coupled with exactive mass spectrometry(UHPLC-QE-MS),network pharmacology,molecular docking(MD),and gene microarray analysis to discern the bioactive constituents and the potential mechanism of action of MLC in UC management.AIM To determine the ingredients related to MLC for treatment of UC using multiple databases to obtain potential targets for fishing.METHODS This research employs UHPLC-QE-MS for the identification of bioactive compounds present in MLC plant samples.Furthermore,the study integrates the identified MLC compound-related targets with publicly available databases to elucidate common drug disease targets.Additionally,the R programming language is utilized to predict the central targets and molecular pathways that MLC may impact in the treatment of UC.Finally,MD are conducted using AutoDock Vina software to assess the affinity of bioactive components to the main targets and confirm their therapeutic potential.RESULTS Firstly,through a comprehensive analysis of UHPLC-QE-MS data and public database resources,we identified 146 drug-disease cross targets related to 11 bioactive components.The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis highlighted that common disease drug targets are primarily involved in oxidative stress management,lipid metabolism,atherosclerosis,and other processes.They also affect AGE-RAGE and apoptosis signaling pathways.Secondly,by analyzing the differences in diseases,we identified key research targets.These core targets are related to 11 active substances,including active ingredients such as quercetin and luteolin.Finally,MD analysis revealed the stability of compound-protein binding,particularly between JUNLuteolin,JUN-Quercetin,HSP90AA1-Wogonin,and HSP90AA1-Rhein.Therefore,this suggests that MLC may help alleviate intestinal inflammation in UC,restore abnormal lipid accumulation,and regulate the expression levels of core proteins in the intestine.CONCLUSION The utilization of MLC has demonstrated notable therapeutic efficacy in the management of UC by means of the compound target interaction pathway.The amalgamation of botanical resources,metabolomics,natural products,MD,and gene chip technology presents a propitious methodology for investigating therapeutic targets of herbal medicines and discerning novel bioactive constituents.
文摘Genital size is a crucial index for the assessment of male sexual development, as abnormal penile or testicular size may be the earliest visible clinical manifestation of some diseases. However, there is a lack of data regarding penile and testicular size measurements for Chinese boys at all stages of childhood and puberty. This cross-sectional study aimed to develop appropriate growth curves and charts for male external genitalia among children and adolescents aged 0-17 years in Chongqing, China. A total of 2974 boys were enrolled in the present study. Penile length was measured using a rigid ruler, penile diameter was measured using a pachymeter, and testicular volume was determined using a Prader orchidometer. Age-specific percentile curves for penile length, penile diameter, and testicular volume were drawn using the generalized additive models for location, scale, and shape. Very similar growth curves were found for both penile length and penile diameter. Both of them gradually rose to 10 years of age and then sharply increased from 11 to 15 years of age. However, testicular volume changed little before the age of 10 years. This study contributes to the literature covering age-specific growth curve and charts about male external genitalia in Chinese children and adolescents. These age-related values are valuable in evaluating the growth and development status of male external genitalia and could be helpful in diagnosing genital disorders.