The development and utilization of marine resources by human beings is gradually moving towards the deep sea,and deep-sea aquaculture platforms have emerged to meet the needs of aquaculture and food security.To better...The development and utilization of marine resources by human beings is gradually moving towards the deep sea,and deep-sea aquaculture platforms have emerged to meet the needs of aquaculture and food security.To better understand the motion response characteristics of the main structure of the full-submersible deep-sea aquaculture platform under the action of water waves,Fluent software is used to numerically simulate regular waves,irregular waves,and strong nonlinear waves,and their effects on the six degrees of freedom motion response of the main structure of the full-submersible deep-sea aquaculture platform are analyzed.The study found that under the towing condition,the smaller the wave direction angle,the more intense the movement.Under the platform’s working conditions,the larger the wave direction angle,the more intense the movement.展开更多
Exploring dimensionality effects on cuprates is important for understanding the nature of high-temperature superconductivity.By atomically layer-by-layer growth with oxide molecular beam epitaxy,we demonstrate that La...Exploring dimensionality effects on cuprates is important for understanding the nature of high-temperature superconductivity.By atomically layer-by-layer growth with oxide molecular beam epitaxy,we demonstrate that La_(2−x)Sr_(x)CuO_(4)(x=0.15)thin films remain superconducting down to 2 unit cells of thickness but quickly reach the maximum superconducting transition temperature at and above 4 unit cells.By fitting the critical magnetic field(μ0H_(c2)),we show that the anisotropy of the film’s superconductivity increases with decreasing film thickness,indicating that the superconductivity of the film gradually evolves from weak three-to two-dimensional character.These results are helpful to gain more insight into the nature of high-temperature superconductivity with dimensionality.展开更多
基金supported by the Selfcultivation Project of Collaborative Innovation Center of Marine Equipment and Technology Institute of Jiangsu University of Science and Technology (No.XTCX202402)。
文摘The development and utilization of marine resources by human beings is gradually moving towards the deep sea,and deep-sea aquaculture platforms have emerged to meet the needs of aquaculture and food security.To better understand the motion response characteristics of the main structure of the full-submersible deep-sea aquaculture platform under the action of water waves,Fluent software is used to numerically simulate regular waves,irregular waves,and strong nonlinear waves,and their effects on the six degrees of freedom motion response of the main structure of the full-submersible deep-sea aquaculture platform are analyzed.The study found that under the towing condition,the smaller the wave direction angle,the more intense the movement.Under the platform’s working conditions,the larger the wave direction angle,the more intense the movement.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFA1403000)the Na-tional Natural Science Foundation of China(Grant No.12250710675).
文摘Exploring dimensionality effects on cuprates is important for understanding the nature of high-temperature superconductivity.By atomically layer-by-layer growth with oxide molecular beam epitaxy,we demonstrate that La_(2−x)Sr_(x)CuO_(4)(x=0.15)thin films remain superconducting down to 2 unit cells of thickness but quickly reach the maximum superconducting transition temperature at and above 4 unit cells.By fitting the critical magnetic field(μ0H_(c2)),we show that the anisotropy of the film’s superconductivity increases with decreasing film thickness,indicating that the superconductivity of the film gradually evolves from weak three-to two-dimensional character.These results are helpful to gain more insight into the nature of high-temperature superconductivity with dimensionality.