Objective:Small cell lung cancer(SCLC)is commonly recognized as the most fatal lung cancer type.Despite substantial advances in immune checkpoint blockade therapies for treating solid cancers,their benefits are limite...Objective:Small cell lung cancer(SCLC)is commonly recognized as the most fatal lung cancer type.Despite substantial advances in immune checkpoint blockade therapies for treating solid cancers,their benefits are limited to a minority of patients with SCLC.In the present study,novel indicators for predicting the outcomes and molecular targets for SCLC treatment were elucidated.Methods:We conducted bioinformatics analysis to identify the key genes associated with tumor-infiltrating lymphocytes in SCLC.The functional role of the key gene identified in SCLC was determined both in vitro and in vivo.Results:A significant correlation was observed between patient survival and CD56dim natural killer(NK)cell proportion.Furthermore,we noted that the hub gene ubiquitin-specific protease 1(USP1)is closely correlated with both CD56dim NK cells and overall survival in SCLC.Bioinformatics analysis revealed that USP1 is upregulated in SCLC.In addition,gene set enrichment analysis revealed that USP1 overexpression hinders NK cell-mediated immune responses.By co-cultivating NK-92 cells with SCLC cells,we demonstrated that NK cell cytotoxicity against SCLC could be improved either via USP1 knock-down or pharmacological inhibition.Furthermore,using a nude-mice xenograft tumor model,we noted that USP1 inhibition effectively suppressed tumor proliferation and increased the expression of NK cell-associated markers.Conclusions:Our study findings highlight the importance of NK cells in regulating SCLC.USP1 overexpression can inhibit NK cell-mediated immunity;therefore,USP1 may serve not only as a prognostic biomarker but also as a potential molecular target of SCLC therapy.展开更多
Xiong'an New Area boasts abundant geothermal resources,with widespread Jixianian geother-mal reservoirs serving as key targets for exploration and development.Zoning geothermal resources helps characterize their d...Xiong'an New Area boasts abundant geothermal resources,with widespread Jixianian geother-mal reservoirs serving as key targets for exploration and development.Zoning geothermal resources helps characterize their distribution and attributes,offering critical guidance for their sustainable exploitation and utilization.This study integrates data from drilling and production tests across 21 geothermal wells to analyze the Jixianian strata,including depth,thickness,temperature,single-well water yield,Groundwater Level Depth(GWD),and Total Dissolved Solids(TDS).Employing fuzzy mathematics,a zoning analysis was performed,yielding quantitative evaluation scores and delineating favorable zones for development.Key findings include:(1)Geothermal reservoirs in the Rongcheng and Niutuozhen uplifts exhibit shallow burial depths,substantial thicknesses,high productivity,and relatively low temperatures,making them highly suitable for large-scale geothermal exploitation;(2)Zones with high resource potential but uncertain conditions require further exploration to mitigate development risks;(3)Areas near the Rongcheng fault or Jixianian strata buried deeper than 4,000 m are recommended for deferred exploitation;(4)Comprehensive evaluation reveals that the Jixianian carbonate geothermal reservoirs in Xiong'an New Area manifest 168 geothermal resources of 5,370.31×10 J,geothermal fluid reserves of 101.17×10 m3,and recoverable fluid 4 reserves of 93.41×10 m3/d under balanced extraction and reinjection.Recoverable geothermal heat 164 amounts to 9.36×10 J/a,equivalent to 319.4×10 t/a of standard coal.This study provides valuable insights into the exploration and sustainable exploitation of deep geothermal reservoirs in Xiong'an New Area,enhancing resource utilization and contributing to the development of a green and sustainable Xiong'an New Area.展开更多
BACKGROUND Liver injury is common in severe acute pancreatitis(SAP).Excessive autophagy often leads to an imbalance of homeostasis in hepatocytes,which induces lipid peroxidation and mitochondrial iron deposition and ...BACKGROUND Liver injury is common in severe acute pancreatitis(SAP).Excessive autophagy often leads to an imbalance of homeostasis in hepatocytes,which induces lipid peroxidation and mitochondrial iron deposition and ultimately leads to ferroptosis.Our previous study found that milk fat globule epidermal growth factor 8(MFG-E8)alleviates acinar cell damage during SAP via binding toαvβ3/5 integrins.MFG-E8 also seems to mitigate pancreatic fibrosis via inhibiting chaperone-mediated autophagy.AIM To speculate whether MFG-E8 could also alleviate SAP induced liver injury by restoring the abnormal autophagy flux.METHODS SAP was induced in mice by 2 hly intraperitoneal injections of 4.0 g/kg L-arginine or 7 hly injections of 50μg/kg cerulein plus lipopolysaccharide.mfge8-knockout mice were used to study the effect of MFG-E8 deficiency on SAPinduced liver injury.Cilengitide,a specificαvβ3/5 integrin inhibitor,was used to investigate the possible mechanism of MFG-E8.RESULTS The results showed that MFG-E8 deficiency aggravated SAP-induced liver injury in mice,enhanced autophagy flux in hepatocyte,and worsened the degree of ferroptosis.Exogenous MFG-E8 reduced SAP-induced liver injury in a dose-dependent manner.Mechanistically,MFG-E8 mitigated excessive autophagy and inhibited ferroptosis in liver cells.Cilengitide abolished MFG-E8’s beneficial effects in SAP-induced liver injury.CONCLUSION MFG-E8 acts as an endogenous protective mediator in SAP-induced liver injury.MFG-E8 alleviates the excessive autophagy and inhibits ferroptosis in hepatocytes by binding to integrinαVβ3/5.展开更多
Objective: To investigate the relationship between platelet-derived growth factor-A (PDGF-A) and atrial fibrosis in patients who have developed atrial fibrillation (AF) secondary to rheumatic valvular disease. Methods...Objective: To investigate the relationship between platelet-derived growth factor-A (PDGF-A) and atrial fibrosis in patients who have developed atrial fibrillation (AF) secondary to rheumatic valvular disease. Methods: 84 selected patients participated in the current study who have developed rheumatic heart disease and were going to have a cardiac surgical operation. In the current study, whole subjects were divided into two group, they were atrial fibrillation (AF) group (the quantity is thirty-nine) and sinus rhythm (SR) group (the quantity is forty-five). Before the operation, complete clinical data was available for the whole patients. During the operation, the right atrial tissue (0.3 - 0.5 mm<sup>3</sup>) was disserted from every patient. Right atrial fibrosis was observed by Masson staining and the distribution of PDGF-A in right atrium specimen was observed by immunohistochemistry. RT-PCR techniques were applied to admeasure the mRNA expressions of PDGF-A in patients’ atrial tissue. At the same time, western-Blot techniques were employed to admeasure the protein expressions of PDGF-A. Results: In baseline clinical characteristics, in both AF group and SR group, there was no apparently difference between them (P > 0.05);compared with SR group, the diameters of left atrium and right atrium in AF group were apparently increased (P Conclusion: Atrial remodeling plays an important role in patients with valvular atrial fibrillation;PDGF-A in patients with AF was highly expressed in the right atrial, and was closely related with atrial fibrosis.展开更多
Maritime radar and automatic identification systems (AIS), which are essential auxiliary equipment for navigation safety in the shipping industry, have played significant roles in maritime safety supervision. However,...Maritime radar and automatic identification systems (AIS), which are essential auxiliary equipment for navigation safety in the shipping industry, have played significant roles in maritime safety supervision. However, in practical applications, the information obtained by a single device is limited, and it is necessary to integrate the information of maritime radar and AIS messages to achieve better recognition effects. In this study, the D-S evidence theory is used to fusion the two kinds of heterogeneous information: maritime radar images and AIS messages. Firstly, the radar image and AIS message are processed to get the targets of interest in the same coordinate system. Then, the coordinate position and heading of targets are chosen as the indicators for judging target similarity. Finally, a piece of D-S evidence theory based on the information fusion method is proposed to match the radar target and the AIS target of the same ship. Particularly, the effectiveness of the proposed method has been validated and evaluated through several experiments, which proves that such a method is practical in maritime safety supervision.展开更多
AIM: To investigate the optimal magnetic pressure and provide a theoretical basis for choledochojejunostomy magnetic compressive anastomosis(magnamosis).METHODS: Four groups of neodymium-iron-boron magnets with differ...AIM: To investigate the optimal magnetic pressure and provide a theoretical basis for choledochojejunostomy magnetic compressive anastomosis(magnamosis).METHODS: Four groups of neodymium-iron-boron magnets with different magnetic pressures of 0.1, 0.2, 0.3 and 0.4 MPa were used to complete the choledochojejunostomy magnamosis. Twenty-six young mongrel dogs were randomly divided into five groups: four groups with different magnetic pressures and 1 group with a hand-suture anastomosis. Serum bilirubin levels were measured in all groups before and 1 wk, 2 wk, 3 wk, 1 mo and 3 mo after surgery. Daily abdominal X-ray fluoroscopy was carried out postoperatively to detect the path and the excretion of the magnet. The animals were euthanized at 1 or 3 mo after the operation, the burst pressure was detected in each anastomosis, and the gross appearance and histology were compared according to the observation.RESULTS: The surgical procedures were all successfully performed in animals. However, animals of group D(magnetic pressure of 0.4 MPa) all experienced complications with bile leakage(4/4), whereas half of animals in group A(magnetic pressure of 0.1 MPa) experienced complications(3/6), 1 animal in the manual group E developed anastomotic stenosis, and animals in group B and group C(magnetic pressure of 0.2 MPa and 0.3 MPa, respectively) all healed well without complications. These results also suggested that the time required to form the stoma was inversely proportional to the magnetic pressure; however, the burst pressure of group A was smaller than those of the other groups at 1 mo(187.5 ± 17.7 vs 290 ± 10/296.7 ± 5.7/287.5 ± 3.5, P < 0.05); the remaining groups did not differ significantly. A histologic examination demonstrated obvious differences between the magnamosis groups and the hand-sewn group.CONCLUSION: We proved that the optimal range for choledochojejunostomy magnamosis is 0.2 MPa to 0.3 MPa, which will help to improve the clinical application of this technique in the future.展开更多
BACKGROUND: The resection and reconstruction of large vessels, including the portal vein, are frequently needed in tumor resection. Warm ischemia before reconstruction might have deleterious effects on the function o...BACKGROUND: The resection and reconstruction of large vessels, including the portal vein, are frequently needed in tumor resection. Warm ischemia before reconstruction might have deleterious effects on the function of some vital organs and therefore, how to reconstruct the vessels quickly after resection is extremely important. The present study was to introduce a new type of magnetic compression anastomosis (MCA) device to establish a quick non-suture anastomosis of the portal vein after resection in canines.展开更多
Geothermal energy is a precious resource,which is widely distributed,varied,and abundant.China has entered a period of rapid development of geothermal energy since 2010.As shallow geothermal energy promoting,the depth...Geothermal energy is a precious resource,which is widely distributed,varied,and abundant.China has entered a period of rapid development of geothermal energy since 2010.As shallow geothermal energy promoting,the depth of hydrothermal geothermal exploration is increasing.The quality of Hot Dry Rock (HDR)and related exploratory technologies are better developed and utilized.On the basis of geothermal development,this paper reviews the geothermal progress during the "12th Five-Year Plan",and summarizes the achievements of hydrothermal geothermal and hot dry rocks from geothermal survey and evaluation aspects.Finally,the authors predict the development trend of the future geothermal research to benefit geothermal and hot dry rock research.展开更多
The Beijing-Tianjin-Hebei region boasts rich geothermal resources and new achievements have been made in the exploration and development of geothermal resources in this region based on previous regional investigation....The Beijing-Tianjin-Hebei region boasts rich geothermal resources and new achievements have been made in the exploration and development of geothermal resources in this region based on previous regional investigation.In detail,geothermal reservoirs of Gaoyuzhuang Formation of Jixian System and Changcheng System in Xiongan New Area have been recently discovered,opening up the second space of geothermal resources;the calculation method of the recoverable resources of geothermal fluid with reinjection being considered has been improved in Beijing-Tianjin-Hebei region,and uniform comprehensive assessment of shallow geothermal energy,hydrothermal geothermal resources,and hot dry rocks(HDR)geothermal resources in the whole Beijing-Tianjin-Shijiazhuang region has been completed.The scientific research base for cascade development and utilization of geothermal resources in Beijing-Tianjin-Hebei region has applied hydraulic fracturing technology to the geothermal reservoirs in Gaoyuzhuang Formation.As a result,the production capacity doubled and two-stage cascade utilization composed of geothermal power generation and geothermal heating were realized,with the first-phase installed capacity of 280 kW and the geothermal heating is 30000 m2.In this way,a model of the exploration,development,and utilization of geothermal resources formed.Large-scale utilization has become the future trend of geothermal resource development in Beijing-Tianjin-Hebei region,and great efforts shall be made to achieve breakthroughs in reinjection technology,geothermal reservoir reconstruction technology,thermoelectric technology and underground heat exchange technology.展开更多
Guanzhong Basin is a typical medium-low temperature geothermal field mainly controlled by geo-pressure in the west of China.The characteristics of hydrogen and oxygen isotopes were used to analyze the flow and storage...Guanzhong Basin is a typical medium-low temperature geothermal field mainly controlled by geo-pressure in the west of China.The characteristics of hydrogen and oxygen isotopes were used to analyze the flow and storage modes of geothermal resources in the basin.In this paper,the basin was divided into six geotectonic units,where a total of 121 samples were collected from geothermal wells and surface water bodies for the analysis of hydrogen-oxygen isotopes.Analytical results show that the isotopic signatures of hydrogen and oxygen throughout Guanzhong Basin reveal a trend of gradual increase from the basin edge areas to the basin center.In terms of recharge systems,the area in the south edge belongs to the geothermal system of Qinling Mountain piedmont,while to the north of Weihe fault is the geothermal system of North mountain piedmont,where the atmospheric temperature is about 0.2℃-1.8℃in the recharge areas.The main factors that affect the geothermal waterδ18O drifting include the depth of geothermal reservoir and temperature of geothermal reservoir,lithological characteristics,water-rock interaction,geothermal reservoir environment and residence time.Theδ18O-δD relation shows that the main source is the meteoric water,together with some sedimentary water,but there are no deep magmatic water and mantle water which recharge the geothermal water in the basin.Through examining the distribution pattern of hydrogen-oxygen isotopic signatures,the groundwater circulation model of this basin can be divided into open circulation type,semi-open type,closed type and sedimentary type.This provides some important information for rational exploitation of the geothermal resources.展开更多
Geothermal energy is a kind of renewable,sustainable and clean energy resource.Geothermal energy is abundant in carbonate reservoirs.However,low matrix permeability limits its exploitation.The super-critical carbon di...Geothermal energy is a kind of renewable,sustainable and clean energy resource.Geothermal energy is abundant in carbonate reservoirs.However,low matrix permeability limits its exploitation.The super-critical carbon dioxide(SC-CO_(2))jet fracturing is expected to efficiently stimulate the carbonate geothermal reservoirs and achieve the storage of CO_(2) simultaneously.In this paper,we established a transient seepage and fluid-thermo-mechanical coupled model to analyze the impact performance of sc-CO_(2) jet fracturing.The mesh-based parallel code coupling interface was employed to couple the fluid and solid domains by exchanging the data through the mesh interface.The physical properties change of sC-CO_(2) with temperature were considered in the numerical model.Results showed that SC-CO_(2) jet frac-turing is superior to water-jet fracturing with respect to jetting velocity,particle trajectory and pene-trability.Besides,stress distribution on the carbonate rock showed that the tensile and shear failure would more easily occur by SC-CO_(2) jet than that by water jet.Moreover,pressure and temperature control the jet field and seepage field of sC-CO_(2) simultaneously.Increasing the jet temperature can effectively enhance the impingement effect and seepage process by decreasing the viscosity and density of SC-CO_(2).The key findings are expected to provide a theoretical basis and design reference for applying SC-CO_(2) jet fracturing in carbonate geothermal reservoirs.展开更多
Cholesterol-25-hydroxylase(CH25 H)and its enzymatic product 25-hydroxy cholesterol(25 HC)exert broadly antiviral activity including inhibiting HIV-1 infection.However,their antiviral immunity and therapeutic efficacy ...Cholesterol-25-hydroxylase(CH25 H)and its enzymatic product 25-hydroxy cholesterol(25 HC)exert broadly antiviral activity including inhibiting HIV-1 infection.However,their antiviral immunity and therapeutic efficacy in a nonhuman primate model are unknown.Here,we report that the regimen of 25 HC combined with antiretroviral therapy(ART),provides profound immunological modulation towards inhibiting viral replication in chronically SIVmac239-infected rhesus macaques(RMs).Compared to the ART alone,this regimen more effectively controlled SIV replication,enhanced SIVspecific cellular immune responses,restored the ratio of CD4/CD8 cells,reversed the hyperactivation state of CD4^(+)T cells,and inhibited the secretion of proinflammatory cytokines by CD4^(^(+))and CD8^(+)T lymphocytes in chronically SIVinfected RMs.Furthermore,the in vivo safety and the preliminary pharmacokinetics of the 25 HC compound were assessed in this RM model.Taken together,these assessments help explain the profound relationship between cholesterol metabolism,immune modulation,and antiviral activities by 25 HC.These results provide insight for developing novel therapeutic drug candidates against HIV-1 infection and other related diseases.展开更多
China established Xiong’an New Area in Hebei Province in 2017,which is planned to accommodate about 5 million people,aiming to relieve Beijing City of the functions non-essential to its role as China’s capital and t...China established Xiong’an New Area in Hebei Province in 2017,which is planned to accommodate about 5 million people,aiming to relieve Beijing City of the functions non-essential to its role as China’s capital and to expedite the coordinated development of the Beijing-Tianjin-Hebei region.From 2017 to 2021,the China Geological Survey(CGS)took the lead in multi-factor urban geological surveys involving space,resources,environments,and disasters according to the general requirements of“global vision,international standards,distinctive Chinese features,and future-oriented goals”in Xiong’an New Area,identifying the engineering geologic conditions and geologic environmental challenges of this area.The achievements also include a 3D engineering geological structure model for the whole area,along with“one city proper and five clusters”,insights into the ecology and the background endowment of natural resources like land,geothermal resources,groundwater,and wetland of the area before engineering construction,a comprehensive monitoring network of resources and environments in the area,and the“Transparent Xiong’an”geological information platform that is open,shared,dynamically updated,and three-dimensionally visualized.China’s geologists and urban geology have played a significant role in the urban planning and construction of Xiong’an New Area,providing whole-process geological solutions for urban planning,construction,operation and management.The future urban construction of Xiong’an New Area will necessitate the theoretical and technical support of earth system science(ESS)from various aspects,and the purpose is to enhance the resilience of the new type of city and to provide support for the green,low-carbon,and sustainable development of this area.展开更多
Owing to strong Fe-P interaction that differs the electron distribution beneath metal/phosphide interface of Fe-P alloy,the charge transfer of Fe-P alloy has been accelerated during the electrocatalytic oxidation proc...Owing to strong Fe-P interaction that differs the electron distribution beneath metal/phosphide interface of Fe-P alloy,the charge transfer of Fe-P alloy has been accelerated during the electrocatalytic oxidation process and improved the efficiency and durability of overall water splitting.In this work,a novel metal-lurgical technology in combination with smelting reduction and Single Roller Melting Spinning(SRMS)for the purpose of electrochemical overall water splitting where High-phosphorus Oolitic Iron Ore(HPOIO)has been directly used as the main raw material is developed for preparing amorphous Fe-P alloys strips.The rational modulation on the Fe/P ratio can alter the crystal structure and crystallinity of Fe-P alloy,favor electron transfer,and further trap the positively charged H^(+).The obtained FeP electrocatalyst ex-hibits 436 and 527 mV at 10 mA cm−1 with Tafel slopes of 102.3 and 77.2 mV dec^(-1) for HER and OER in 1.0 mol/L KOH solution,respectively,especially with long-term stability(∼207 h for HER and∼42 h for OER).Specifically,the DFT calculation displaying structural advantages and componential superiorities exhibited that P in Fe-P amorphous alloy regulated by systematic P addition optimization might increase the energy density in the Fermi level.Furthermore,the phosphorus content brought about high active surface areas,low impedance,and variable reaction paths-caused low reaction energy barriers with the improved amorphicity and absorption and desorption of intermediates,thereby boosting the overall wa-ter splitting activity.This study displays a novel strategy to develop Fe-P amorphous alloy for the stable and efficient overall water splitting.展开更多
To accelerate the recycling of black soil,it is necessary to develop a new type of soil remediation equipment to improve its working efficiency.The one-way test was used to determine the mean level value of the steepe...To accelerate the recycling of black soil,it is necessary to develop a new type of soil remediation equipment to improve its working efficiency.The one-way test was used to determine the mean level value of the steepest climb test,and the combined equilibrium method was used to determine the upper and lower interval levels of the response surface test for parameter optimisation.Based on the results of the response surface indices,machine learning was performed and the optimal model was determined.The results show that the predictive ability and stability of the decision tree model for the two indicators are better than that of random forest and support vector machine.The optimal parameter combinations determined using the decision tree model are:speed 73 rpm,homogenisation pitch 183 mm,homogenisation time 1 s,descent speed 0.06 m/s.The error between the optimal value of the machine learning prediction model and the actual simulation is 1.1%and 5.72%,respectively.The results of the study show that the effect of optimizing the parameters through machine learning achieves a satisfactory prediction accuracy.展开更多
To facilitate the recycling of polluted soils,the development of innovative multi-axial soil remediation machinery is essential for achieving a uniform blend of soil with remediation chemicals.The mean level of the st...To facilitate the recycling of polluted soils,the development of innovative multi-axial soil remediation machinery is essential for achieving a uniform blend of soil with remediation chemicals.The mean level of the steepest climb test was set using the mean level derived from the orthogonal test,and then the range of optimum values was determined based on the results of the steepest climb test,and the upper and lower bound intervals of the response surface test were set accordingly.The most optimal model is identified by applying machine learning algorithms to the response surface data.The results show that the Decision Tree model outperforms Random Forest,SVR,KNN and XG Boost in terms of accuracy and stability in predicting dual indicators.Analysis of the decision tree model yields the following optimal parameter settings:homogenisation time of 1.7 s,homogenisation spacing of 181 mm,crusher spacing of 156 mm,and speed of 113 rpm.In the final test prototype,the error rates of the machine learning prediction models were 3.01% and 3.88% respectively.The experimental data confirms that the prediction accuracy reaches a satisfactory level after applying machine learning to optimise the parameters.This study will provide a reference for the design and optimisation of new in situ multi-axial soil remediation devices.展开更多
基金supported by grants from the Dongguan Science and Technology of Social Development Program(No.20231800940192)the Talent Development Foundation of the First Dongguan Affiliated Hospital of Guangdong Medical University(No.PU2023002).
文摘Objective:Small cell lung cancer(SCLC)is commonly recognized as the most fatal lung cancer type.Despite substantial advances in immune checkpoint blockade therapies for treating solid cancers,their benefits are limited to a minority of patients with SCLC.In the present study,novel indicators for predicting the outcomes and molecular targets for SCLC treatment were elucidated.Methods:We conducted bioinformatics analysis to identify the key genes associated with tumor-infiltrating lymphocytes in SCLC.The functional role of the key gene identified in SCLC was determined both in vitro and in vivo.Results:A significant correlation was observed between patient survival and CD56dim natural killer(NK)cell proportion.Furthermore,we noted that the hub gene ubiquitin-specific protease 1(USP1)is closely correlated with both CD56dim NK cells and overall survival in SCLC.Bioinformatics analysis revealed that USP1 is upregulated in SCLC.In addition,gene set enrichment analysis revealed that USP1 overexpression hinders NK cell-mediated immune responses.By co-cultivating NK-92 cells with SCLC cells,we demonstrated that NK cell cytotoxicity against SCLC could be improved either via USP1 knock-down or pharmacological inhibition.Furthermore,using a nude-mice xenograft tumor model,we noted that USP1 inhibition effectively suppressed tumor proliferation and increased the expression of NK cell-associated markers.Conclusions:Our study findings highlight the importance of NK cells in regulating SCLC.USP1 overexpression can inhibit NK cell-mediated immunity;therefore,USP1 may serve not only as a prognostic biomarker but also as a potential molecular target of SCLC therapy.
基金funded by the Study on enhanced heat transfer mechanism of low-permeability carbonate rocks under in-situ conditions under Grant number YK202305the National Natural Science Foundation of China under Grant number 42272350the Geothermal Survey Project of the China Geological Survey under Grant number DD20221676.
文摘Xiong'an New Area boasts abundant geothermal resources,with widespread Jixianian geother-mal reservoirs serving as key targets for exploration and development.Zoning geothermal resources helps characterize their distribution and attributes,offering critical guidance for their sustainable exploitation and utilization.This study integrates data from drilling and production tests across 21 geothermal wells to analyze the Jixianian strata,including depth,thickness,temperature,single-well water yield,Groundwater Level Depth(GWD),and Total Dissolved Solids(TDS).Employing fuzzy mathematics,a zoning analysis was performed,yielding quantitative evaluation scores and delineating favorable zones for development.Key findings include:(1)Geothermal reservoirs in the Rongcheng and Niutuozhen uplifts exhibit shallow burial depths,substantial thicknesses,high productivity,and relatively low temperatures,making them highly suitable for large-scale geothermal exploitation;(2)Zones with high resource potential but uncertain conditions require further exploration to mitigate development risks;(3)Areas near the Rongcheng fault or Jixianian strata buried deeper than 4,000 m are recommended for deferred exploitation;(4)Comprehensive evaluation reveals that the Jixianian carbonate geothermal reservoirs in Xiong'an New Area manifest 168 geothermal resources of 5,370.31×10 J,geothermal fluid reserves of 101.17×10 m3,and recoverable fluid 4 reserves of 93.41×10 m3/d under balanced extraction and reinjection.Recoverable geothermal heat 164 amounts to 9.36×10 J/a,equivalent to 319.4×10 t/a of standard coal.This study provides valuable insights into the exploration and sustainable exploitation of deep geothermal reservoirs in Xiong'an New Area,enhancing resource utilization and contributing to the development of a green and sustainable Xiong'an New Area.
基金Supported by the National Natural Science Foundation of China,No.82100685the Scientific Research Fund of Xi’an Health Commission,No.2021yb08+1 种基金Scientific Research Fund of Xi’an Central Hospital,No.2022QN07Innovation Capability Support Plan of Xi’an Science and Technology Bureau,No.23YXYJ0097.
文摘BACKGROUND Liver injury is common in severe acute pancreatitis(SAP).Excessive autophagy often leads to an imbalance of homeostasis in hepatocytes,which induces lipid peroxidation and mitochondrial iron deposition and ultimately leads to ferroptosis.Our previous study found that milk fat globule epidermal growth factor 8(MFG-E8)alleviates acinar cell damage during SAP via binding toαvβ3/5 integrins.MFG-E8 also seems to mitigate pancreatic fibrosis via inhibiting chaperone-mediated autophagy.AIM To speculate whether MFG-E8 could also alleviate SAP induced liver injury by restoring the abnormal autophagy flux.METHODS SAP was induced in mice by 2 hly intraperitoneal injections of 4.0 g/kg L-arginine or 7 hly injections of 50μg/kg cerulein plus lipopolysaccharide.mfge8-knockout mice were used to study the effect of MFG-E8 deficiency on SAPinduced liver injury.Cilengitide,a specificαvβ3/5 integrin inhibitor,was used to investigate the possible mechanism of MFG-E8.RESULTS The results showed that MFG-E8 deficiency aggravated SAP-induced liver injury in mice,enhanced autophagy flux in hepatocyte,and worsened the degree of ferroptosis.Exogenous MFG-E8 reduced SAP-induced liver injury in a dose-dependent manner.Mechanistically,MFG-E8 mitigated excessive autophagy and inhibited ferroptosis in liver cells.Cilengitide abolished MFG-E8’s beneficial effects in SAP-induced liver injury.CONCLUSION MFG-E8 acts as an endogenous protective mediator in SAP-induced liver injury.MFG-E8 alleviates the excessive autophagy and inhibits ferroptosis in hepatocytes by binding to integrinαVβ3/5.
文摘Objective: To investigate the relationship between platelet-derived growth factor-A (PDGF-A) and atrial fibrosis in patients who have developed atrial fibrillation (AF) secondary to rheumatic valvular disease. Methods: 84 selected patients participated in the current study who have developed rheumatic heart disease and were going to have a cardiac surgical operation. In the current study, whole subjects were divided into two group, they were atrial fibrillation (AF) group (the quantity is thirty-nine) and sinus rhythm (SR) group (the quantity is forty-five). Before the operation, complete clinical data was available for the whole patients. During the operation, the right atrial tissue (0.3 - 0.5 mm<sup>3</sup>) was disserted from every patient. Right atrial fibrosis was observed by Masson staining and the distribution of PDGF-A in right atrium specimen was observed by immunohistochemistry. RT-PCR techniques were applied to admeasure the mRNA expressions of PDGF-A in patients’ atrial tissue. At the same time, western-Blot techniques were employed to admeasure the protein expressions of PDGF-A. Results: In baseline clinical characteristics, in both AF group and SR group, there was no apparently difference between them (P > 0.05);compared with SR group, the diameters of left atrium and right atrium in AF group were apparently increased (P Conclusion: Atrial remodeling plays an important role in patients with valvular atrial fibrillation;PDGF-A in patients with AF was highly expressed in the right atrial, and was closely related with atrial fibrosis.
文摘Maritime radar and automatic identification systems (AIS), which are essential auxiliary equipment for navigation safety in the shipping industry, have played significant roles in maritime safety supervision. However, in practical applications, the information obtained by a single device is limited, and it is necessary to integrate the information of maritime radar and AIS messages to achieve better recognition effects. In this study, the D-S evidence theory is used to fusion the two kinds of heterogeneous information: maritime radar images and AIS messages. Firstly, the radar image and AIS message are processed to get the targets of interest in the same coordinate system. Then, the coordinate position and heading of targets are chosen as the indicators for judging target similarity. Finally, a piece of D-S evidence theory based on the information fusion method is proposed to match the radar target and the AIS target of the same ship. Particularly, the effectiveness of the proposed method has been validated and evaluated through several experiments, which proves that such a method is practical in maritime safety supervision.
基金the National Natural Science Foundation of China,No.51275387the Project of Development and Innovation Team of Ministry of Education,No.IRT1279the Science and Technology Co-ordination and Innovation Project,Shaanxi Province of China,No.2011KTCQ03-12
文摘AIM: To investigate the optimal magnetic pressure and provide a theoretical basis for choledochojejunostomy magnetic compressive anastomosis(magnamosis).METHODS: Four groups of neodymium-iron-boron magnets with different magnetic pressures of 0.1, 0.2, 0.3 and 0.4 MPa were used to complete the choledochojejunostomy magnamosis. Twenty-six young mongrel dogs were randomly divided into five groups: four groups with different magnetic pressures and 1 group with a hand-suture anastomosis. Serum bilirubin levels were measured in all groups before and 1 wk, 2 wk, 3 wk, 1 mo and 3 mo after surgery. Daily abdominal X-ray fluoroscopy was carried out postoperatively to detect the path and the excretion of the magnet. The animals were euthanized at 1 or 3 mo after the operation, the burst pressure was detected in each anastomosis, and the gross appearance and histology were compared according to the observation.RESULTS: The surgical procedures were all successfully performed in animals. However, animals of group D(magnetic pressure of 0.4 MPa) all experienced complications with bile leakage(4/4), whereas half of animals in group A(magnetic pressure of 0.1 MPa) experienced complications(3/6), 1 animal in the manual group E developed anastomotic stenosis, and animals in group B and group C(magnetic pressure of 0.2 MPa and 0.3 MPa, respectively) all healed well without complications. These results also suggested that the time required to form the stoma was inversely proportional to the magnetic pressure; however, the burst pressure of group A was smaller than those of the other groups at 1 mo(187.5 ± 17.7 vs 290 ± 10/296.7 ± 5.7/287.5 ± 3.5, P < 0.05); the remaining groups did not differ significantly. A histologic examination demonstrated obvious differences between the magnamosis groups and the hand-sewn group.CONCLUSION: We proved that the optimal range for choledochojejunostomy magnamosis is 0.2 MPa to 0.3 MPa, which will help to improve the clinical application of this technique in the future.
基金supported by grants from the National Natural Science Foundation of China(30830099&81470896&81127005)the Science and Technology Co-ordinating Innovative Engineering Projects of Shaanxi Province(2014KTCQ03-05)
文摘BACKGROUND: The resection and reconstruction of large vessels, including the portal vein, are frequently needed in tumor resection. Warm ischemia before reconstruction might have deleterious effects on the function of some vital organs and therefore, how to reconstruct the vessels quickly after resection is extremely important. The present study was to introduce a new type of magnetic compression anastomosis (MCA) device to establish a quick non-suture anastomosis of the portal vein after resection in canines.
基金National Natural Science Foundation of China(4160227)China Geological Survey(DD20160207,DD20189112).
文摘Geothermal energy is a precious resource,which is widely distributed,varied,and abundant.China has entered a period of rapid development of geothermal energy since 2010.As shallow geothermal energy promoting,the depth of hydrothermal geothermal exploration is increasing.The quality of Hot Dry Rock (HDR)and related exploratory technologies are better developed and utilized.On the basis of geothermal development,this paper reviews the geothermal progress during the "12th Five-Year Plan",and summarizes the achievements of hydrothermal geothermal and hot dry rocks from geothermal survey and evaluation aspects.Finally,the authors predict the development trend of the future geothermal research to benefit geothermal and hot dry rock research.
基金This work is financially supported by the Special Fund for National Key Research and Development Program of China(2018YFC0604306)China Geological Survey project Survey and Assessment of Geothermal Energy in Xiongan New Area(DD20189112)Technology Innovation Center of Geothermal and Hot Dry Rock Exploration and Development,Ministry of Natural Resources.
文摘The Beijing-Tianjin-Hebei region boasts rich geothermal resources and new achievements have been made in the exploration and development of geothermal resources in this region based on previous regional investigation.In detail,geothermal reservoirs of Gaoyuzhuang Formation of Jixian System and Changcheng System in Xiongan New Area have been recently discovered,opening up the second space of geothermal resources;the calculation method of the recoverable resources of geothermal fluid with reinjection being considered has been improved in Beijing-Tianjin-Hebei region,and uniform comprehensive assessment of shallow geothermal energy,hydrothermal geothermal resources,and hot dry rocks(HDR)geothermal resources in the whole Beijing-Tianjin-Shijiazhuang region has been completed.The scientific research base for cascade development and utilization of geothermal resources in Beijing-Tianjin-Hebei region has applied hydraulic fracturing technology to the geothermal reservoirs in Gaoyuzhuang Formation.As a result,the production capacity doubled and two-stage cascade utilization composed of geothermal power generation and geothermal heating were realized,with the first-phase installed capacity of 280 kW and the geothermal heating is 30000 m2.In this way,a model of the exploration,development,and utilization of geothermal resources formed.Large-scale utilization has become the future trend of geothermal resource development in Beijing-Tianjin-Hebei region,and great efforts shall be made to achieve breakthroughs in reinjection technology,geothermal reservoir reconstruction technology,thermoelectric technology and underground heat exchange technology.
基金funded by National Key R&D Program of China(Grant No.2019YFB1504101)National Natural Science Foundation of China(No.41602271)China Geological Survey(No.DD20160207,DD20189112)。
文摘Guanzhong Basin is a typical medium-low temperature geothermal field mainly controlled by geo-pressure in the west of China.The characteristics of hydrogen and oxygen isotopes were used to analyze the flow and storage modes of geothermal resources in the basin.In this paper,the basin was divided into six geotectonic units,where a total of 121 samples were collected from geothermal wells and surface water bodies for the analysis of hydrogen-oxygen isotopes.Analytical results show that the isotopic signatures of hydrogen and oxygen throughout Guanzhong Basin reveal a trend of gradual increase from the basin edge areas to the basin center.In terms of recharge systems,the area in the south edge belongs to the geothermal system of Qinling Mountain piedmont,while to the north of Weihe fault is the geothermal system of North mountain piedmont,where the atmospheric temperature is about 0.2℃-1.8℃in the recharge areas.The main factors that affect the geothermal waterδ18O drifting include the depth of geothermal reservoir and temperature of geothermal reservoir,lithological characteristics,water-rock interaction,geothermal reservoir environment and residence time.Theδ18O-δD relation shows that the main source is the meteoric water,together with some sedimentary water,but there are no deep magmatic water and mantle water which recharge the geothermal water in the basin.Through examining the distribution pattern of hydrogen-oxygen isotopic signatures,the groundwater circulation model of this basin can be divided into open circulation type,semi-open type,closed type and sedimentary type.This provides some important information for rational exploitation of the geothermal resources.
基金the National Key R&D Program of China(No.2019YFB1504102).
文摘Geothermal energy is a kind of renewable,sustainable and clean energy resource.Geothermal energy is abundant in carbonate reservoirs.However,low matrix permeability limits its exploitation.The super-critical carbon dioxide(SC-CO_(2))jet fracturing is expected to efficiently stimulate the carbonate geothermal reservoirs and achieve the storage of CO_(2) simultaneously.In this paper,we established a transient seepage and fluid-thermo-mechanical coupled model to analyze the impact performance of sc-CO_(2) jet fracturing.The mesh-based parallel code coupling interface was employed to couple the fluid and solid domains by exchanging the data through the mesh interface.The physical properties change of sC-CO_(2) with temperature were considered in the numerical model.Results showed that SC-CO_(2) jet frac-turing is superior to water-jet fracturing with respect to jetting velocity,particle trajectory and pene-trability.Besides,stress distribution on the carbonate rock showed that the tensile and shear failure would more easily occur by SC-CO_(2) jet than that by water jet.Moreover,pressure and temperature control the jet field and seepage field of sC-CO_(2) simultaneously.Increasing the jet temperature can effectively enhance the impingement effect and seepage process by decreasing the viscosity and density of SC-CO_(2).The key findings are expected to provide a theoretical basis and design reference for applying SC-CO_(2) jet fracturing in carbonate geothermal reservoirs.
基金supported by the National Natural Science Foundation of China(81971927,31870912,32000124)the National Science and Technology Major Project of China(2018ZX10731101-002)+4 种基金the National Key Research and Development Program of China(2018YFA0900803)the Science and Technology Planning Project of Shenzhen City(20190804095916056,JCYJ20200109142601702)the High Level Project of Medicine in Longhua,Shenzhen(HLPM201907020105)China Postdoctoral Science Foundation(Grant No.2019M663140)the Municipal Health and Medical cooperation innovation Major Project of Guangzhou City(201704020219,201803040002)。
文摘Cholesterol-25-hydroxylase(CH25 H)and its enzymatic product 25-hydroxy cholesterol(25 HC)exert broadly antiviral activity including inhibiting HIV-1 infection.However,their antiviral immunity and therapeutic efficacy in a nonhuman primate model are unknown.Here,we report that the regimen of 25 HC combined with antiretroviral therapy(ART),provides profound immunological modulation towards inhibiting viral replication in chronically SIVmac239-infected rhesus macaques(RMs).Compared to the ART alone,this regimen more effectively controlled SIV replication,enhanced SIVspecific cellular immune responses,restored the ratio of CD4/CD8 cells,reversed the hyperactivation state of CD4^(+)T cells,and inhibited the secretion of proinflammatory cytokines by CD4^(^(+))and CD8^(+)T lymphocytes in chronically SIVinfected RMs.Furthermore,the in vivo safety and the preliminary pharmacokinetics of the 25 HC compound were assessed in this RM model.Taken together,these assessments help explain the profound relationship between cholesterol metabolism,immune modulation,and antiviral activities by 25 HC.These results provide insight for developing novel therapeutic drug candidates against HIV-1 infection and other related diseases.
基金supported by two projects initialed China Geological Survey: “Evaluation on Soil and Water Quality and Geological Survey in Xiong’an New Area (DD20189122)” and “Monitoring and Evaluation on Carrying Capacity of Resource and Environment in BeijingTianjin-Hebei Coordinated Development Zone and Xiong’an New Area (DD20221727)”
文摘China established Xiong’an New Area in Hebei Province in 2017,which is planned to accommodate about 5 million people,aiming to relieve Beijing City of the functions non-essential to its role as China’s capital and to expedite the coordinated development of the Beijing-Tianjin-Hebei region.From 2017 to 2021,the China Geological Survey(CGS)took the lead in multi-factor urban geological surveys involving space,resources,environments,and disasters according to the general requirements of“global vision,international standards,distinctive Chinese features,and future-oriented goals”in Xiong’an New Area,identifying the engineering geologic conditions and geologic environmental challenges of this area.The achievements also include a 3D engineering geological structure model for the whole area,along with“one city proper and five clusters”,insights into the ecology and the background endowment of natural resources like land,geothermal resources,groundwater,and wetland of the area before engineering construction,a comprehensive monitoring network of resources and environments in the area,and the“Transparent Xiong’an”geological information platform that is open,shared,dynamically updated,and three-dimensionally visualized.China’s geologists and urban geology have played a significant role in the urban planning and construction of Xiong’an New Area,providing whole-process geological solutions for urban planning,construction,operation and management.The future urban construction of Xiong’an New Area will necessitate the theoretical and technical support of earth system science(ESS)from various aspects,and the purpose is to enhance the resilience of the new type of city and to provide support for the green,low-carbon,and sustainable development of this area.
基金financially supported by the National Natu-ral Science Foundation of China(Nos.U21A20317,U23A20606,22109121,and 22309141)the fund from Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials,Wuhan University of Science and Technology(No.WKDM202204)+1 种基金the National Key Research and Development Program of China(No.2022YFB3207200)The Numerical calculation is supported by the High-Performance Computing Center of Wuhan University of Sci-ence and Technology.
文摘Owing to strong Fe-P interaction that differs the electron distribution beneath metal/phosphide interface of Fe-P alloy,the charge transfer of Fe-P alloy has been accelerated during the electrocatalytic oxidation process and improved the efficiency and durability of overall water splitting.In this work,a novel metal-lurgical technology in combination with smelting reduction and Single Roller Melting Spinning(SRMS)for the purpose of electrochemical overall water splitting where High-phosphorus Oolitic Iron Ore(HPOIO)has been directly used as the main raw material is developed for preparing amorphous Fe-P alloys strips.The rational modulation on the Fe/P ratio can alter the crystal structure and crystallinity of Fe-P alloy,favor electron transfer,and further trap the positively charged H^(+).The obtained FeP electrocatalyst ex-hibits 436 and 527 mV at 10 mA cm−1 with Tafel slopes of 102.3 and 77.2 mV dec^(-1) for HER and OER in 1.0 mol/L KOH solution,respectively,especially with long-term stability(∼207 h for HER and∼42 h for OER).Specifically,the DFT calculation displaying structural advantages and componential superiorities exhibited that P in Fe-P amorphous alloy regulated by systematic P addition optimization might increase the energy density in the Fermi level.Furthermore,the phosphorus content brought about high active surface areas,low impedance,and variable reaction paths-caused low reaction energy barriers with the improved amorphicity and absorption and desorption of intermediates,thereby boosting the overall wa-ter splitting activity.This study displays a novel strategy to develop Fe-P amorphous alloy for the stable and efficient overall water splitting.
基金funding from the National Key Research and Development Plan of China(grant No.2020YFC1806402)the Shenyang Science and Technology Plan Project(grant No.20–202–4–37).
文摘To accelerate the recycling of black soil,it is necessary to develop a new type of soil remediation equipment to improve its working efficiency.The one-way test was used to determine the mean level value of the steepest climb test,and the combined equilibrium method was used to determine the upper and lower interval levels of the response surface test for parameter optimisation.Based on the results of the response surface indices,machine learning was performed and the optimal model was determined.The results show that the predictive ability and stability of the decision tree model for the two indicators are better than that of random forest and support vector machine.The optimal parameter combinations determined using the decision tree model are:speed 73 rpm,homogenisation pitch 183 mm,homogenisation time 1 s,descent speed 0.06 m/s.The error between the optimal value of the machine learning prediction model and the actual simulation is 1.1%and 5.72%,respectively.The results of the study show that the effect of optimizing the parameters through machine learning achieves a satisfactory prediction accuracy.
基金the National Key Research and Development Plan of China(grant No.2020YFC1806402).
文摘To facilitate the recycling of polluted soils,the development of innovative multi-axial soil remediation machinery is essential for achieving a uniform blend of soil with remediation chemicals.The mean level of the steepest climb test was set using the mean level derived from the orthogonal test,and then the range of optimum values was determined based on the results of the steepest climb test,and the upper and lower bound intervals of the response surface test were set accordingly.The most optimal model is identified by applying machine learning algorithms to the response surface data.The results show that the Decision Tree model outperforms Random Forest,SVR,KNN and XG Boost in terms of accuracy and stability in predicting dual indicators.Analysis of the decision tree model yields the following optimal parameter settings:homogenisation time of 1.7 s,homogenisation spacing of 181 mm,crusher spacing of 156 mm,and speed of 113 rpm.In the final test prototype,the error rates of the machine learning prediction models were 3.01% and 3.88% respectively.The experimental data confirms that the prediction accuracy reaches a satisfactory level after applying machine learning to optimise the parameters.This study will provide a reference for the design and optimisation of new in situ multi-axial soil remediation devices.