Tissue engineering chambers (TECs) represent a new and attractive in vivo tissue engineering model that can successfully generate mature adipose tissue. However, the newly formed adipose tissue is not able to fill the...Tissue engineering chambers (TECs) represent a new and attractive in vivo tissue engineering model that can successfully generate mature adipose tissue. However, the newly formed adipose tissue is not able to fill the volume of the chamber as expected. To investigate whether the capsule surrounding the newly formed adipose tissue limits the adipose tissue volume in the chamber, we detected fibrotic parameters two months after these chambers were implanted into rats. The results showed that the newly formed adipose tissue was surrounded by a thick layer of capsule, and the protein levels of transforming growth factor-<em>β</em>1 (TGF-<em>β</em>1), phosphorylated Smad2 (p-Smad2), connective tissue growth factor (CTGF), collagen type I (COL-I) and α-smooth muscle actin (<em>α</em>-SMA) in the capsule were increased. The levels of these proteins decreased following systemic administration of P144 (a peptide inhibitor of TGF-<em>β</em>1). Furthermore, the capsule thickness was significantly reduced, and the adipose tissue volume was markedly greater when using P144. These findings indicate that capsule formation, which is mediated through a TGF-<em>β</em>1 signaling pathway, restricted the volume of the engineered adipose tissue that was formed. This study may provide a new approach to regenerate amounts of adipose tissue for the reconstruction of large soft tissue defects.展开更多
<b>Objectives:</b> Allogeneic myoblast transplantation (AMT), cyclosporine immunosuppression and coronary artery bypass grafting (CABG) were used to treat end-stage heart failure (HF) subjects without hope...<b>Objectives:</b> Allogeneic myoblast transplantation (AMT), cyclosporine immunosuppression and coronary artery bypass grafting (CABG) were used to treat end-stage heart failure (HF) subjects without hope of obtaining a heart transplant. <b>Background:</b> Severe myocardial infarction conveys serious complications such as ventricular aneurysm, wall thinning and rupture with fatal consequences. <b>Methods: </b>After meeting Inclusion/Exclusion criteria and signing Patient Informed Consents, 10 HF subjects having mean thinnest wall thickness of 2.21 ± 0.55 mm and ventricular aneurysms were admitted under intensive care. Each subject took daily cyclosporine for three weeks. On the third day of cyclosporine administration, approximately 1 billion myoblasts were implanted <span>through 20 injections into the infarcted myocardium following CABG. <b>Results: </b><u>Safety</u> No subject suffered death, viral infection, malignant arrhythmia, reduction in cardiac output, immune rejection, or aneurysm growth. No significant difference was found before versus after treatment in the mean levels of blood routine, liver and kidney enzymes, electrolytes and fibrinogen. <u>Efficacy</u> Emission computed tomography (ECT) and magnetic resonance (MR) demonstrated significant increases in viability and perfusion. Mean left ventricular ejection fraction (LVEF) significantly increased (P < 0.05) by 20.1% and 19.3% at 6 months and at 2 years postoperatively. New York Heart Association (NYHA) class improved by 2 grades, including 6-minute walk test (6 MWT) distance increase, and reductions in the number of episodes of angina pectoris, chest tightness, shortness of breath after exercise, and nighttime sit-up breathing. <b>Conclusions: </b>For the first time, AMT in adjunct use with CABG and cyclosporine demonstrated that cell survived and engrafted in patients with ischemic cardiomyopathy;in this small study the cell transplant was safe. The improvement in heart function and quality of life could be secondary to combined effect of bypass and cell transplant. A larger randomized clinical trial is required to confirm the efficacy.展开更多
The objective of this research was to acquire a raindrop size distribution(DSDs)retrieved from C-band polarimetric radar observations scheme for the first time in south China.An observation period of the precipitation...The objective of this research was to acquire a raindrop size distribution(DSDs)retrieved from C-band polarimetric radar observations scheme for the first time in south China.An observation period of the precipitation process was selected,and the shape-slope(μ-Λ)relationship of this region was statistically analyzed using the raindrop sample observations from the two-dimensional video disdrometer(2DVD)at Xinfeng Station,Guangdong Province.Simulated data of the C-band polarimetric radar reflectivity ZHHand differential reflectivity ZDRwere obtained through scattering simulation.The simulation data were combined with DSD fitting to determine the ZDR-Λand log10(ZHH/N0)-Λrelationships.Using Xinfeng C-band polarimetric radar observations ZDRand ZHH,the raindrop Gamma size distribution parametersμ,Λ,and N0were retrieved.A scheme for using C-band polarimetric radar to retrieve the DSDs was developed.This research revealed that during precipitation process,the DSDs obtained using the C-band polarimetric radar retrieval scheme are similar to the 2DVD observations,the precipitation characteristics of rainfall intensity(R),mass-weighted mean diameter(Dm)and intercept parameter(Nw)with time obtained by radar retrieval are basically consistent with the observational results of the 2DVD.This scheme establishes the relationship between the observations of the C-band polarimetric radar and the physical quantities of the numerical model.This method not only can test the prediction of the model data assimilation system on the convective scale and determine error sources,but also can improve the microphysical precipitation processes analysis and radar quantitative precipitation estimation.The present research will facilitate radar data assimilation in the future.展开更多
The agglomeration behavior of particles significantly impacts on the defluidization occurring in a fluidized bed during the direct reduction process.The influence of CO/H_(2)ratio on surface diffusion of iron atoms wa...The agglomeration behavior of particles significantly impacts on the defluidization occurring in a fluidized bed during the direct reduction process.The influence of CO/H_(2)ratio on surface diffusion of iron atoms was proposed,and the solid bridge force between iron oxide particles was quantificationally analyzed.Moreover,the solid bridge force was successfully added into a CFD–DEM(computational fluid dynamics–discrete element method)model combined with heat transfer and mass transport to investigate the detailed information of agglomeration in a fluidized bed,including the spatial distribution of temperature,velocity and metallization of iron oxide particles.The region of defluidization is sensitive to the reduction temperature.At the same reduction temperature,the iron oxide powder will perform higher metallization and stable fluidization properties with molar fraction of H_(2)in the range of 0.6–0.8,when iron oxide is reduced by CO/H_(2)mixture.展开更多
A high strength low alloy steel with low carbon equivalent was selected for simulating online direct quench- ing and coiling (DQ-C) process. The influence of stop quenching temperature on mechanical properties and m...A high strength low alloy steel with low carbon equivalent was selected for simulating online direct quench- ing and coiling (DQ-C) process. The influence of stop quenching temperature on mechanical properties and micro- structures was studied and compared with normal direct quenching and tempering (DQ-T) process. The study con- firmed that required mechanical properties were obtained for both the processes. Properties of the experimental steel with DQ-C process could reach the same level as that of DQ-T process in general. In the DQ-C process, strength de- creased with increase in stop quenching temperature. Martensite was obtained and experienced an aging process at stop quenching temperature below Mi. On fast cooling below Mi, martensite was partially transformed and carbon partitioning occurred during slow cooling. The reduction in solid solution carbon and increased amount of retained austenite led to lower strength compared with the DQ-T process. DQ-C process was more favorable for microalloy carbide precipitation. However, impact toughness under different cooling conditions was adequate because of low car- bon equivalent and refined microstructure.展开更多
Forward radiative transfer(RT)models are essential for atmospheric applications such as remote sensing and weather and climate models,where computational efficiency becomes equally as important as accuracy for high-re...Forward radiative transfer(RT)models are essential for atmospheric applications such as remote sensing and weather and climate models,where computational efficiency becomes equally as important as accuracy for high-resolution hyperspectral measurements that need rigorous RT simulations for thousands of channels.This study introduces a fast and accurate RT model for the hyperspectral infrared(HIR)sounder based on principal component analysis(PCA)or machine learning(i.e.,neural network,NN).The Geosynchronous Interferometric Infrared Sounder(GIIRS),the first HIR sounder onboard the geostationary Fengyun-4 satellites,is considered to be a candidate example for model development and validation.Our method uses either PCA or NN(PCA/NN)twice for the atmospheric transmittance and radiance,respectively,to reduce the number of independent but similar simulations to accelerate RT simulations;thereby,it is referred to as a multi-domain compression model.The first PCA/NN gives monochromatic gas transmittance in both spectral and atmospheric pressure domains for each gas independently.The second PCA/NN is performed in the traditional spectral radiance domain.Meanwhile,a new method is introduced to choose representative variables for the PCA/NN scheme developments.The model is three orders of magnitude faster than the standard line-by-line-based simulations with averaged brightness temperature difference(BTD)less than 0.1 K,and the compressions based on PCA or NN methods result in comparable efficiency and accuracy.Our fast model not only avoids an excessively complicated transmittance scheme by using PCA/NN but is also highly flexible for hyperspectral instruments with similar spectral ranges simply by updating the corresponding spectral response functions.展开更多
In this paper,we will conclude the results of Bufeng-1(BF-1)A/B data processing,calibration workflow,and validation of the calibrated sea surface winds,land surface soil moisture,and sea surface height measurements.Si...In this paper,we will conclude the results of Bufeng-1(BF-1)A/B data processing,calibration workflow,and validation of the calibrated sea surface winds,land surface soil moisture,and sea surface height measurements.Since 2019,the BF-1 mission has operated in-orbit for over 4 years.The Earth reflected delay Doppler maps(DDMs)are continuously collected to perform global sea surface and land observations.At the same time,the intermediate frequency(IF)raw data are also obtained for 12 seconds every pass in diagnostic mode.To begin with,a brief description of the spaceborne Global Navigation Satellite System Reflectometry(GNSS-R)technique will be provided in the introduction.Next,we will present the overview of Chinese BF-1 mission and the data specifications used in our research.In the next section,the BF-1 mission-related spaceborne power calibration and validation are presented to show the support to power DDM observable production for sea surface and land surface applications.Then,the status of Chinese Beidou System(BDS)Equivalent Isotropic Radiated Power(EIRP)acquisition programme is then introduced.Furthermore,the latest sea surface height(SSH)measurements results including two modes(group delay and carrier phase)and wind speed derivation based on machine learning(ML)method will be spatial-temporal aligned and validated with auxiliary datasets including Denmark Technology University(DTU)mean sea surface(MSS)products and European Centre for Medium-Range Weather Forecasts(ECMWF)ERA5 reanalysis.The previous published results of sea surface winds retrieval under Hurricane conditions and soil moisture retrieval are also reviewed for the BF-1 mission applications.Finally,the conclusion of BF-1 derived results will be discussed to draw out ongoing/future works.展开更多
A procedure to evaluate the quality consistency of generic drugs based on the impurity profile and the similarity analysis methods was presented in this paper. Nifedipine extended-release tablets from six generic fact...A procedure to evaluate the quality consistency of generic drugs based on the impurity profile and the similarity analysis methods was presented in this paper. Nifedipine extended-release tablets from six generic factories of China were used to evaluate the uniformity with the original drug in the study. The procedure includes: choice of chromatographic methods, data collection and conformity test, evaluation of intra-batch similarity of drugs, evaluation of generic drugs with the original drug and weighted similarity evaluation of generic drugs. The data were collected via high-performance liquid chromatography (HPLC), and then calculated by correlation coefficient, cosine, principal component analysis (PCA) and hierarchical clustering analysis (HCA). It is more suitable to use peak areas as the vector when calculating the similarity of impurity profile. After weighting the peak areas of the unspecified impurities in further evaluation of the generic quality, the generic level of different factories was differentiated and the best generic factory was picked out.展开更多
High-energy gamma-ray radiography has exceptional penetration ability and has become an indispensable nondestructive testing(NDT)tool in various fields.For high-energy photons,point projection radiography is almost th...High-energy gamma-ray radiography has exceptional penetration ability and has become an indispensable nondestructive testing(NDT)tool in various fields.For high-energy photons,point projection radiography is almost the only feasible imaging method,and its spatial resolution is primarily constrained by the size of the gamma-ray source.In conventional industrial applications,gamma-ray sources are commonly based on electron beams driven by accelerators,utilizing the process of bremsstrahlung radiation.The size of the gamma-ray source is dependent on the dimensional characteristics of the electron beam.Extensive research has been conducted on various advanced accelerator technologies that have the potential to greatly improve spatial resolution in NDT.In our investigation of laser-driven gamma-ray sources,a spatial resolution of about 90μm is achieved when the areal density of the penetrated object is 120 g/cm^(2).A virtual source approach is proposed to optimize the size of the gamma-ray source used for imaging,with the aim of maximizing spatial resolution.In this virtual source approach,the gamma ray can be considered as being emitted from a virtual source within the convertor,where the equivalent gamma-ray source size in imaging is much smaller than the actual emission area.On the basis of Monte Carlo simulations,we derive a set of evaluation formulas for virtual source scale and gamma-ray emission angle.Under optimal conditions,the virtual source size can be as small as 15μm,which can significantly improve the spatial resolution of high-penetration imaging to less than 50μm.展开更多
Lung cancer is a highly heterogeneous malignancy with a complex pathogenesis, involving a series of endogenous alterations such as genetic mutations, epigenetic modifications, and oxidative stress. Recent advancements...Lung cancer is a highly heterogeneous malignancy with a complex pathogenesis, involving a series of endogenous alterations such as genetic mutations, epigenetic modifications, and oxidative stress. Recent advancements in lung cancer research, especially at the genomic and molecular biology levels, have continuously provided new potential targets and perspectives for the diagnosis and treatment of lung cancer. Therefore, this article summarizes the recent progress in the study of endogenous factors related to the pathogenesis of lung cancer, aiming to enhance the understanding of intrinsic factors in lung cancer and to organize ideas for subsequent related research.展开更多
文摘Tissue engineering chambers (TECs) represent a new and attractive in vivo tissue engineering model that can successfully generate mature adipose tissue. However, the newly formed adipose tissue is not able to fill the volume of the chamber as expected. To investigate whether the capsule surrounding the newly formed adipose tissue limits the adipose tissue volume in the chamber, we detected fibrotic parameters two months after these chambers were implanted into rats. The results showed that the newly formed adipose tissue was surrounded by a thick layer of capsule, and the protein levels of transforming growth factor-<em>β</em>1 (TGF-<em>β</em>1), phosphorylated Smad2 (p-Smad2), connective tissue growth factor (CTGF), collagen type I (COL-I) and α-smooth muscle actin (<em>α</em>-SMA) in the capsule were increased. The levels of these proteins decreased following systemic administration of P144 (a peptide inhibitor of TGF-<em>β</em>1). Furthermore, the capsule thickness was significantly reduced, and the adipose tissue volume was markedly greater when using P144. These findings indicate that capsule formation, which is mediated through a TGF-<em>β</em>1 signaling pathway, restricted the volume of the engineered adipose tissue that was formed. This study may provide a new approach to regenerate amounts of adipose tissue for the reconstruction of large soft tissue defects.
文摘<b>Objectives:</b> Allogeneic myoblast transplantation (AMT), cyclosporine immunosuppression and coronary artery bypass grafting (CABG) were used to treat end-stage heart failure (HF) subjects without hope of obtaining a heart transplant. <b>Background:</b> Severe myocardial infarction conveys serious complications such as ventricular aneurysm, wall thinning and rupture with fatal consequences. <b>Methods: </b>After meeting Inclusion/Exclusion criteria and signing Patient Informed Consents, 10 HF subjects having mean thinnest wall thickness of 2.21 ± 0.55 mm and ventricular aneurysms were admitted under intensive care. Each subject took daily cyclosporine for three weeks. On the third day of cyclosporine administration, approximately 1 billion myoblasts were implanted <span>through 20 injections into the infarcted myocardium following CABG. <b>Results: </b><u>Safety</u> No subject suffered death, viral infection, malignant arrhythmia, reduction in cardiac output, immune rejection, or aneurysm growth. No significant difference was found before versus after treatment in the mean levels of blood routine, liver and kidney enzymes, electrolytes and fibrinogen. <u>Efficacy</u> Emission computed tomography (ECT) and magnetic resonance (MR) demonstrated significant increases in viability and perfusion. Mean left ventricular ejection fraction (LVEF) significantly increased (P < 0.05) by 20.1% and 19.3% at 6 months and at 2 years postoperatively. New York Heart Association (NYHA) class improved by 2 grades, including 6-minute walk test (6 MWT) distance increase, and reductions in the number of episodes of angina pectoris, chest tightness, shortness of breath after exercise, and nighttime sit-up breathing. <b>Conclusions: </b>For the first time, AMT in adjunct use with CABG and cyclosporine demonstrated that cell survived and engrafted in patients with ischemic cardiomyopathy;in this small study the cell transplant was safe. The improvement in heart function and quality of life could be secondary to combined effect of bypass and cell transplant. A larger randomized clinical trial is required to confirm the efficacy.
基金National Key R&D Program of China(2018YFC1507401)Science and Technology Planning Project of Guangdong Province(2017B020244002)+1 种基金National Natural Science Foundation of China(41975138,41705020)Natural Science Foundation of Guangdong Province(2019A1515010814)。
文摘The objective of this research was to acquire a raindrop size distribution(DSDs)retrieved from C-band polarimetric radar observations scheme for the first time in south China.An observation period of the precipitation process was selected,and the shape-slope(μ-Λ)relationship of this region was statistically analyzed using the raindrop sample observations from the two-dimensional video disdrometer(2DVD)at Xinfeng Station,Guangdong Province.Simulated data of the C-band polarimetric radar reflectivity ZHHand differential reflectivity ZDRwere obtained through scattering simulation.The simulation data were combined with DSD fitting to determine the ZDR-Λand log10(ZHH/N0)-Λrelationships.Using Xinfeng C-band polarimetric radar observations ZDRand ZHH,the raindrop Gamma size distribution parametersμ,Λ,and N0were retrieved.A scheme for using C-band polarimetric radar to retrieve the DSDs was developed.This research revealed that during precipitation process,the DSDs obtained using the C-band polarimetric radar retrieval scheme are similar to the 2DVD observations,the precipitation characteristics of rainfall intensity(R),mass-weighted mean diameter(Dm)and intercept parameter(Nw)with time obtained by radar retrieval are basically consistent with the observational results of the 2DVD.This scheme establishes the relationship between the observations of the C-band polarimetric radar and the physical quantities of the numerical model.This method not only can test the prediction of the model data assimilation system on the convective scale and determine error sources,but also can improve the microphysical precipitation processes analysis and radar quantitative precipitation estimation.The present research will facilitate radar data assimilation in the future.
基金the National Natural Science Foundation Project of China(51374263 and 51974046).
文摘The agglomeration behavior of particles significantly impacts on the defluidization occurring in a fluidized bed during the direct reduction process.The influence of CO/H_(2)ratio on surface diffusion of iron atoms was proposed,and the solid bridge force between iron oxide particles was quantificationally analyzed.Moreover,the solid bridge force was successfully added into a CFD–DEM(computational fluid dynamics–discrete element method)model combined with heat transfer and mass transport to investigate the detailed information of agglomeration in a fluidized bed,including the spatial distribution of temperature,velocity and metallization of iron oxide particles.The region of defluidization is sensitive to the reduction temperature.At the same reduction temperature,the iron oxide powder will perform higher metallization and stable fluidization properties with molar fraction of H_(2)in the range of 0.6–0.8,when iron oxide is reduced by CO/H_(2)mixture.
基金Item Sponsored by National Natural Science Foundation of China(51234002)
文摘A high strength low alloy steel with low carbon equivalent was selected for simulating online direct quench- ing and coiling (DQ-C) process. The influence of stop quenching temperature on mechanical properties and micro- structures was studied and compared with normal direct quenching and tempering (DQ-T) process. The study con- firmed that required mechanical properties were obtained for both the processes. Properties of the experimental steel with DQ-C process could reach the same level as that of DQ-T process in general. In the DQ-C process, strength de- creased with increase in stop quenching temperature. Martensite was obtained and experienced an aging process at stop quenching temperature below Mi. On fast cooling below Mi, martensite was partially transformed and carbon partitioning occurred during slow cooling. The reduction in solid solution carbon and increased amount of retained austenite led to lower strength compared with the DQ-T process. DQ-C process was more favorable for microalloy carbide precipitation. However, impact toughness under different cooling conditions was adequate because of low car- bon equivalent and refined microstructure.
基金supported by the National Natural Science Foundation of China(Grant No.42122038)。
文摘Forward radiative transfer(RT)models are essential for atmospheric applications such as remote sensing and weather and climate models,where computational efficiency becomes equally as important as accuracy for high-resolution hyperspectral measurements that need rigorous RT simulations for thousands of channels.This study introduces a fast and accurate RT model for the hyperspectral infrared(HIR)sounder based on principal component analysis(PCA)or machine learning(i.e.,neural network,NN).The Geosynchronous Interferometric Infrared Sounder(GIIRS),the first HIR sounder onboard the geostationary Fengyun-4 satellites,is considered to be a candidate example for model development and validation.Our method uses either PCA or NN(PCA/NN)twice for the atmospheric transmittance and radiance,respectively,to reduce the number of independent but similar simulations to accelerate RT simulations;thereby,it is referred to as a multi-domain compression model.The first PCA/NN gives monochromatic gas transmittance in both spectral and atmospheric pressure domains for each gas independently.The second PCA/NN is performed in the traditional spectral radiance domain.Meanwhile,a new method is introduced to choose representative variables for the PCA/NN scheme developments.The model is three orders of magnitude faster than the standard line-by-line-based simulations with averaged brightness temperature difference(BTD)less than 0.1 K,and the compressions based on PCA or NN methods result in comparable efficiency and accuracy.Our fast model not only avoids an excessively complicated transmittance scheme by using PCA/NN but is also highly flexible for hyperspectral instruments with similar spectral ranges simply by updating the corresponding spectral response functions.
基金supported by the ESA&NRSCC Dragon 5 Cooperation[Grant No.58070]the National Natural Science Foundation of China[Grant No.42101409]+2 种基金China Spacesat[Grant No.SK2020014]funded by MCIN/AEI/10.13039/501100011033 with contributions by“European Union Next Generation EU/PRTR”[Grant No.RYC2019-027000-I]is also supported by Spanish National Research Council[Grant No.20215AT007].
文摘In this paper,we will conclude the results of Bufeng-1(BF-1)A/B data processing,calibration workflow,and validation of the calibrated sea surface winds,land surface soil moisture,and sea surface height measurements.Since 2019,the BF-1 mission has operated in-orbit for over 4 years.The Earth reflected delay Doppler maps(DDMs)are continuously collected to perform global sea surface and land observations.At the same time,the intermediate frequency(IF)raw data are also obtained for 12 seconds every pass in diagnostic mode.To begin with,a brief description of the spaceborne Global Navigation Satellite System Reflectometry(GNSS-R)technique will be provided in the introduction.Next,we will present the overview of Chinese BF-1 mission and the data specifications used in our research.In the next section,the BF-1 mission-related spaceborne power calibration and validation are presented to show the support to power DDM observable production for sea surface and land surface applications.Then,the status of Chinese Beidou System(BDS)Equivalent Isotropic Radiated Power(EIRP)acquisition programme is then introduced.Furthermore,the latest sea surface height(SSH)measurements results including two modes(group delay and carrier phase)and wind speed derivation based on machine learning(ML)method will be spatial-temporal aligned and validated with auxiliary datasets including Denmark Technology University(DTU)mean sea surface(MSS)products and European Centre for Medium-Range Weather Forecasts(ECMWF)ERA5 reanalysis.The previous published results of sea surface winds retrieval under Hurricane conditions and soil moisture retrieval are also reviewed for the BF-1 mission applications.Finally,the conclusion of BF-1 derived results will be discussed to draw out ongoing/future works.
文摘A procedure to evaluate the quality consistency of generic drugs based on the impurity profile and the similarity analysis methods was presented in this paper. Nifedipine extended-release tablets from six generic factories of China were used to evaluate the uniformity with the original drug in the study. The procedure includes: choice of chromatographic methods, data collection and conformity test, evaluation of intra-batch similarity of drugs, evaluation of generic drugs with the original drug and weighted similarity evaluation of generic drugs. The data were collected via high-performance liquid chromatography (HPLC), and then calculated by correlation coefficient, cosine, principal component analysis (PCA) and hierarchical clustering analysis (HCA). It is more suitable to use peak areas as the vector when calculating the similarity of impurity profile. After weighting the peak areas of the unspecified impurities in further evaluation of the generic quality, the generic level of different factories was differentiated and the best generic factory was picked out.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.12175212,11991071,12004353,11975214,and 11905202)the National Key R&D Program of China(Grant No.2022YFA1603300)+1 种基金the Science Challenge Project(Project No.TZ2018005)the Sciences and Technology on Plasma Physics Laboratory at CAEP(Grant No.6142A04200103).
文摘High-energy gamma-ray radiography has exceptional penetration ability and has become an indispensable nondestructive testing(NDT)tool in various fields.For high-energy photons,point projection radiography is almost the only feasible imaging method,and its spatial resolution is primarily constrained by the size of the gamma-ray source.In conventional industrial applications,gamma-ray sources are commonly based on electron beams driven by accelerators,utilizing the process of bremsstrahlung radiation.The size of the gamma-ray source is dependent on the dimensional characteristics of the electron beam.Extensive research has been conducted on various advanced accelerator technologies that have the potential to greatly improve spatial resolution in NDT.In our investigation of laser-driven gamma-ray sources,a spatial resolution of about 90μm is achieved when the areal density of the penetrated object is 120 g/cm^(2).A virtual source approach is proposed to optimize the size of the gamma-ray source used for imaging,with the aim of maximizing spatial resolution.In this virtual source approach,the gamma ray can be considered as being emitted from a virtual source within the convertor,where the equivalent gamma-ray source size in imaging is much smaller than the actual emission area.On the basis of Monte Carlo simulations,we derive a set of evaluation formulas for virtual source scale and gamma-ray emission angle.Under optimal conditions,the virtual source size can be as small as 15μm,which can significantly improve the spatial resolution of high-penetration imaging to less than 50μm.
文摘Lung cancer is a highly heterogeneous malignancy with a complex pathogenesis, involving a series of endogenous alterations such as genetic mutations, epigenetic modifications, and oxidative stress. Recent advancements in lung cancer research, especially at the genomic and molecular biology levels, have continuously provided new potential targets and perspectives for the diagnosis and treatment of lung cancer. Therefore, this article summarizes the recent progress in the study of endogenous factors related to the pathogenesis of lung cancer, aiming to enhance the understanding of intrinsic factors in lung cancer and to organize ideas for subsequent related research.