Acoustic source localization(ASL)and sound event detection(SED)are two widely pursued independent research fields.In recent years,in order to achieve a more complete spatial and temporal representation of sound field,...Acoustic source localization(ASL)and sound event detection(SED)are two widely pursued independent research fields.In recent years,in order to achieve a more complete spatial and temporal representation of sound field,sound event localization and detection(SELD)has become a very active research topic.This paper presents a deep learning-based multioverlapping sound event localization and detection algorithm in three-dimensional space.Log-Mel spectrum and generalized cross-correlation spectrum are joined together in channel dimension as input features.These features are classified and regressed in parallel after training by a neural network to obtain sound recognition and localization results respectively.The channel attention mechanism is also introduced in the network to selectively enhance the features containing essential information and suppress the useless features.Finally,a thourough comparison confirms the efficiency and effectiveness of the proposed SELD algorithm.Field experiments show that the proposed algorithm is robust to reverberation and environment and can achieve higher recognition and localization accuracy compared with the baseline method.展开更多
总磷(TP)、悬浮物浓度(SS)、浊度(TUB)3种水质参数可以直接通过遥感反演得到,常用于评价区域水环境的污染状况.以浙江农林大学东湖为研究对像,使用无人机携带多光谱传感器(Mica Sense Red Edge)获取多光谱影像,进而提取16个光谱参数,分...总磷(TP)、悬浮物浓度(SS)、浊度(TUB)3种水质参数可以直接通过遥感反演得到,常用于评价区域水环境的污染状况.以浙江农林大学东湖为研究对像,使用无人机携带多光谱传感器(Mica Sense Red Edge)获取多光谱影像,进而提取16个光谱参数,分别构建东湖水域TP、SS、TUB的反演模型.结果表明:光谱参数V5(NIR 0.770~0.890μm)与TP、SS相关性显著(r分别为0.470、-0.537,p<0.05),V4(0.670~0.760μm)与TUB相关性显著(r=0.486,p<0.05).在建立的TP反演模型中,指数函数模型精度最高,决定系数R^2为0.7829;在建立的SS、TUB反演模型中,多项式函数模型精度最高,决定系数R^2分别为0.7503、0.7334.经检验,TP、SS、TUB模型估测值与实测值线性拟合曲线的决定系数R^2分别为0.7374、0.8978、0.6726,满足水质要素反演的精度要求.最后利用建立的模型,结合多光谱影像数据,建立了东湖水域各参数的空间分布图,实现了水质参数的可视化,可为小微水域的污染防治提供技术支撑.展开更多
基金supported by the National Natural Science Foundation of China(61877067)the Foundation of Science and Technology on Near-Surface Detection Laboratory(TCGZ2019A002,TCGZ2021C003,6142414200511)the Natural Science Basic Research Program of Shaanxi(2021JZ-19)。
文摘Acoustic source localization(ASL)and sound event detection(SED)are two widely pursued independent research fields.In recent years,in order to achieve a more complete spatial and temporal representation of sound field,sound event localization and detection(SELD)has become a very active research topic.This paper presents a deep learning-based multioverlapping sound event localization and detection algorithm in three-dimensional space.Log-Mel spectrum and generalized cross-correlation spectrum are joined together in channel dimension as input features.These features are classified and regressed in parallel after training by a neural network to obtain sound recognition and localization results respectively.The channel attention mechanism is also introduced in the network to selectively enhance the features containing essential information and suppress the useless features.Finally,a thourough comparison confirms the efficiency and effectiveness of the proposed SELD algorithm.Field experiments show that the proposed algorithm is robust to reverberation and environment and can achieve higher recognition and localization accuracy compared with the baseline method.
文摘总磷(TP)、悬浮物浓度(SS)、浊度(TUB)3种水质参数可以直接通过遥感反演得到,常用于评价区域水环境的污染状况.以浙江农林大学东湖为研究对像,使用无人机携带多光谱传感器(Mica Sense Red Edge)获取多光谱影像,进而提取16个光谱参数,分别构建东湖水域TP、SS、TUB的反演模型.结果表明:光谱参数V5(NIR 0.770~0.890μm)与TP、SS相关性显著(r分别为0.470、-0.537,p<0.05),V4(0.670~0.760μm)与TUB相关性显著(r=0.486,p<0.05).在建立的TP反演模型中,指数函数模型精度最高,决定系数R^2为0.7829;在建立的SS、TUB反演模型中,多项式函数模型精度最高,决定系数R^2分别为0.7503、0.7334.经检验,TP、SS、TUB模型估测值与实测值线性拟合曲线的决定系数R^2分别为0.7374、0.8978、0.6726,满足水质要素反演的精度要求.最后利用建立的模型,结合多光谱影像数据,建立了东湖水域各参数的空间分布图,实现了水质参数的可视化,可为小微水域的污染防治提供技术支撑.