设计了一种应用于有源箝位正激变换器拓扑的线缆压降补偿电路。在适当时刻对电路CS引脚进行采样,得到负载电流信息,再根据该信息自适应调整误差放大器的基准电压,有效降低了负载调整率,提高了输出电压精度。该电路基于0.18μm 40 V BCD...设计了一种应用于有源箝位正激变换器拓扑的线缆压降补偿电路。在适当时刻对电路CS引脚进行采样,得到负载电流信息,再根据该信息自适应调整误差放大器的基准电压,有效降低了负载调整率,提高了输出电压精度。该电路基于0.18μm 40 V BCD工艺设计。仿真结果表明,在3~30 A负载电流范围内,未经线缆补偿时,有源箝位正激变换器的整体负载调整率为9.8 mV/A;引入线缆补偿后,整体负载调整率降低为0.096 mV/A,仅为未经线缆补偿前的0.98%。展开更多
We report an NMR experimental realization of a rapid quantum deletion algorithm that deletes marked states in an unsorted database.Unlike classical deletion,where search and deletion are equivalent,quantum deletion ca...We report an NMR experimental realization of a rapid quantum deletion algorithm that deletes marked states in an unsorted database.Unlike classical deletion,where search and deletion are equivalent,quantum deletion can be implemented with only a single query,which achieves exponential speed-up compared to the optimal classical analog.In the experimental realization,the GRAPE algorithm was used to obtain an optimized NMR pulse sequence,and the efficient method of maximum-likelihood has been used to reconstruct the experimental output state.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11175094 and 91221205)the National Basic Research Program of China(Grant No.2011CB9216002)
文摘We report an NMR experimental realization of a rapid quantum deletion algorithm that deletes marked states in an unsorted database.Unlike classical deletion,where search and deletion are equivalent,quantum deletion can be implemented with only a single query,which achieves exponential speed-up compared to the optimal classical analog.In the experimental realization,the GRAPE algorithm was used to obtain an optimized NMR pulse sequence,and the efficient method of maximum-likelihood has been used to reconstruct the experimental output state.