In the present work,the hydrodynamic performance of the double deflector rectangular cambered otter board was studied using wind tunnel experiment,flume tank experiment and numerical simulation.Results showed that the...In the present work,the hydrodynamic performance of the double deflector rectangular cambered otter board was studied using wind tunnel experiment,flume tank experiment and numerical simulation.Results showed that the otter board had a good hydrodynamic performance with the maximum lift-to-drag ratio(K_(MAX) = 3.70).The flow separation occurred when the angle of attack(AOA) was at 45?,which revealed that the double deflector structure of the otter board can delay the flow separation.Numerical simulation results showed a good agreement with experiment ones,and could predict the critical AOA,which showed that it can be used to study the hydrodynamic performance of the otter board with the advantage of flow visualization.However,the drag coefficient in flume tank was much higher than that in wind tunnel,which resulted in a lower lift-to-drag ratio.These may be due to different fluid media between flume tank and wind tunnel,which result in the big difference of the vortexes around the otter board.Given the otter boards are operated in water,it was suggested to apply both flume tank experiment and numerical simulation to study the hydrodynamic performance of otter board.展开更多
The age, growth and maturation of Sthenoteuthis oualaniensis were determined with statolith data collected with a light purse seine from the Bashi Channel of central Pacific Ocean. The estimated longevity of the squid...The age, growth and maturation of Sthenoteuthis oualaniensis were determined with statolith data collected with a light purse seine from the Bashi Channel of central Pacific Ocean. The estimated longevity of the squid was no more than 6 months for females, and no more than 5 months for males. Growth in mantle length(ML) was best described by logistic models for both females and males, while growth in body weight(BW) was best fitted by power curves. The maximum absolute growth rate(AGR) and instantaneous growth rate(IGR) in ML or BW both occurred at 91–105 days for females and 76–90 days for males. Back calculated hatching dates were from October to January, with a peak in December, although the short duration of sampling date might have had an influence on the result. The lower percentage of mature females(37.2%) suggested that the study area during the sampling date was not a spawning ground for the species. Size and age at first maturity were 183 mm ML and 136 days for females, whereas they were 156 mm ML and 85 days for males.展开更多
Spatial distribution patterns of the different life stages of Euphausia superba in the region of the South Shet- land Islands and southern Scotia Sea (Antarctica) were assessed based on scientific survey data collec...Spatial distribution patterns of the different life stages of Euphausia superba in the region of the South Shet- land Islands and southern Scotia Sea (Antarctica) were assessed based on scientific survey data collected in lanuary and February of 2010. Adults, eggs, nauplii, metanauplii, calyptopis I-Ill, and furcilia I-II were found in the investigation. The abundance of larvae averaged 1 172.8 ind./mz, with calyptopis I and II as the dominant stages. Habitat occupancy patterns varied among Euphausia superba at different stages, and three sub-regions were identified by cluster analysis. The degree of larval development increased from west to east. Larvae were not observed north of the South Shetland Islands. Calyptopis I was predominant in the water between Elephant Island and the South Orkney Islands, which featured no thermocline. Older stages, including calyptopis II and III and furcilia I and II, were common in north and northeast of the South Orkney Islands, which were characterized by high temperature and high chlorophyll concentration. Distri- bution and abundance of the early life stages of E. superba were associated with specific environmental con- ditions. According to Biota-Environment matching (BIOENV), the distributions of E. superba larvae were correlated with a combination of temperature at the surface and 200 m, and 0-100 m integrated chlorophyll a concentration.展开更多
The behavior of argon plasma driven by nanosecond pulsed plasma in a low-pressure plasma reactor is investigated using a global model, and the results are compared with the experimental measurements. The time evolutio...The behavior of argon plasma driven by nanosecond pulsed plasma in a low-pressure plasma reactor is investigated using a global model, and the results are compared with the experimental measurements. The time evolution of plasma density and the electron energy probability function are calculated by solving the energy balance and Boltzmann equations. During and shortly after the discharge pulse, the electron energy probability function can be represented by a bi-Maxwellian distribution, indicating two energy groups of electrons. According to the effective electron temperature calculation, we find that there are more high-energy electrons that play an important role in the excitation and ionization processes than low-energy electrons. The effective electron temperature is also measured via optical emission spectroscopy to evaluate the simulation model. In the comparison, the simulation results are found to be in agreement with the measure- ments. Furthermore, variations of the effective electron temperature are presented versus other discharge parameters, such as pulse width time, pulse rise time and gas pressure.展开更多
基金supported by the National Key Technology R&D Program(No.2013BAD13B03)the Key R&D Project from Science and Technology Department of Zhejiang Province(Nos.2018C02026,2018C02040)+1 种基金the National Natural Science Foundation of China(No.31072246)the Fundamental Research Funds for the Central Universities(No.201564020)
文摘In the present work,the hydrodynamic performance of the double deflector rectangular cambered otter board was studied using wind tunnel experiment,flume tank experiment and numerical simulation.Results showed that the otter board had a good hydrodynamic performance with the maximum lift-to-drag ratio(K_(MAX) = 3.70).The flow separation occurred when the angle of attack(AOA) was at 45?,which revealed that the double deflector structure of the otter board can delay the flow separation.Numerical simulation results showed a good agreement with experiment ones,and could predict the critical AOA,which showed that it can be used to study the hydrodynamic performance of the otter board with the advantage of flow visualization.However,the drag coefficient in flume tank was much higher than that in wind tunnel,which resulted in a lower lift-to-drag ratio.These may be due to different fluid media between flume tank and wind tunnel,which result in the big difference of the vortexes around the otter board.Given the otter boards are operated in water,it was suggested to apply both flume tank experiment and numerical simulation to study the hydrodynamic performance of otter board.
基金supported by the Natural National Science Foundation of China (Nos. 41306127 and 41276156)the Innovation Program of Shanghai Municipal Education Commission (No.13YZ091)+1 种基金the Ph.D Programs Foundation of Ministry of Education of China (No. 20133104120001)Shanghai Universities First-class Disciplines Project (Fisheries A)
文摘The age, growth and maturation of Sthenoteuthis oualaniensis were determined with statolith data collected with a light purse seine from the Bashi Channel of central Pacific Ocean. The estimated longevity of the squid was no more than 6 months for females, and no more than 5 months for males. Growth in mantle length(ML) was best described by logistic models for both females and males, while growth in body weight(BW) was best fitted by power curves. The maximum absolute growth rate(AGR) and instantaneous growth rate(IGR) in ML or BW both occurred at 91–105 days for females and 76–90 days for males. Back calculated hatching dates were from October to January, with a peak in December, although the short duration of sampling date might have had an influence on the result. The lower percentage of mature females(37.2%) suggested that the study area during the sampling date was not a spawning ground for the species. Size and age at first maturity were 183 mm ML and 136 days for females, whereas they were 156 mm ML and 85 days for males.
基金Project on the exploration of fishery resources in the offshore supported by the Ministry of Agriculture(2010-2013)Chinese Polar Environment Comprehensive Investigation and Assessment Programes under contract No.CHINARE2012~2016-01-06
文摘Spatial distribution patterns of the different life stages of Euphausia superba in the region of the South Shet- land Islands and southern Scotia Sea (Antarctica) were assessed based on scientific survey data collected in lanuary and February of 2010. Adults, eggs, nauplii, metanauplii, calyptopis I-Ill, and furcilia I-II were found in the investigation. The abundance of larvae averaged 1 172.8 ind./mz, with calyptopis I and II as the dominant stages. Habitat occupancy patterns varied among Euphausia superba at different stages, and three sub-regions were identified by cluster analysis. The degree of larval development increased from west to east. Larvae were not observed north of the South Shetland Islands. Calyptopis I was predominant in the water between Elephant Island and the South Orkney Islands, which featured no thermocline. Older stages, including calyptopis II and III and furcilia I and II, were common in north and northeast of the South Orkney Islands, which were characterized by high temperature and high chlorophyll concentration. Distri- bution and abundance of the early life stages of E. superba were associated with specific environmental con- ditions. According to Biota-Environment matching (BIOENV), the distributions of E. superba larvae were correlated with a combination of temperature at the surface and 200 m, and 0-100 m integrated chlorophyll a concentration.
基金supported by National Natural Science Foundation of China (Nos.10875023,11175035)the Ph.D research program(No.200801411040 ) of Educational Ministry+1 种基金the Scientific and Technical Foundation of Liaoning Province (No.20082168)National Magnetic Confinement Fusion Science Program of China (Nos.2009GB106004,2008CB717801)
文摘The behavior of argon plasma driven by nanosecond pulsed plasma in a low-pressure plasma reactor is investigated using a global model, and the results are compared with the experimental measurements. The time evolution of plasma density and the electron energy probability function are calculated by solving the energy balance and Boltzmann equations. During and shortly after the discharge pulse, the electron energy probability function can be represented by a bi-Maxwellian distribution, indicating two energy groups of electrons. According to the effective electron temperature calculation, we find that there are more high-energy electrons that play an important role in the excitation and ionization processes than low-energy electrons. The effective electron temperature is also measured via optical emission spectroscopy to evaluate the simulation model. In the comparison, the simulation results are found to be in agreement with the measure- ments. Furthermore, variations of the effective electron temperature are presented versus other discharge parameters, such as pulse width time, pulse rise time and gas pressure.