For positive integers k and r,a(k,r)-coloring of graph G is a proper vertex k-coloring of G such that the neighbors of any vertex v∈V(G)receive at least min{d_(G)(v),r}different colors.The r-hued chromatic number of ...For positive integers k and r,a(k,r)-coloring of graph G is a proper vertex k-coloring of G such that the neighbors of any vertex v∈V(G)receive at least min{d_(G)(v),r}different colors.The r-hued chromatic number of G,denoted χ_(r)(G),is the smallest integer k such that G admits a(k,r)-coloring.Let Q_(n) be the n-dimensional hypercube.For any integers n and r with n≥2 and 2≤r≤5,we investigated the behavior of χ_(r)(Q_(n)),and determined the exact value of χ_(2)(Q_(n))and χ_(3)(Q_(n))for all positive integers n.展开更多
基金supported by Natural Science Foundation of Xinjiang Uygur Autonomous Region of China“Spanning connectivity and supereulerian properties of graphs”(2022D01C410).
文摘For positive integers k and r,a(k,r)-coloring of graph G is a proper vertex k-coloring of G such that the neighbors of any vertex v∈V(G)receive at least min{d_(G)(v),r}different colors.The r-hued chromatic number of G,denoted χ_(r)(G),is the smallest integer k such that G admits a(k,r)-coloring.Let Q_(n) be the n-dimensional hypercube.For any integers n and r with n≥2 and 2≤r≤5,we investigated the behavior of χ_(r)(Q_(n)),and determined the exact value of χ_(2)(Q_(n))and χ_(3)(Q_(n))for all positive integers n.