Spiking neural networks(SNNs)represent a biologically-inspired computational framework that bridges neuroscience and artificial intelligence,offering unique advantages in temporal data processing,energy efficiency,and...Spiking neural networks(SNNs)represent a biologically-inspired computational framework that bridges neuroscience and artificial intelligence,offering unique advantages in temporal data processing,energy efficiency,and real-time decision-making.This paper explores the evolution of SNN technologies,emphasizing their integration with advanced learning mechanisms such as spike-timing-dependent plasticity(STDP)and hybridization with deep learning architectures.Leveraging memristors as nanoscale synaptic devices,we demonstrate significant enhancements in energy efficiency,adaptability,and scalability,addressing key challenges in neuromorphic computing.Through phase portraits and nonlinear dynamics analysis,we validate the system’s stability and robustness under diverse workloads.These advancements position SNNs as a transformative technology for applications in robotics,IoT,and adaptive low-power AI systems,paving the way for future innovations in neuromorphic hardware and hybrid learning paradigms.展开更多
基金Supported by CUP(J53C22003010006,J43C24000230007)ICREA2019.
文摘Spiking neural networks(SNNs)represent a biologically-inspired computational framework that bridges neuroscience and artificial intelligence,offering unique advantages in temporal data processing,energy efficiency,and real-time decision-making.This paper explores the evolution of SNN technologies,emphasizing their integration with advanced learning mechanisms such as spike-timing-dependent plasticity(STDP)and hybridization with deep learning architectures.Leveraging memristors as nanoscale synaptic devices,we demonstrate significant enhancements in energy efficiency,adaptability,and scalability,addressing key challenges in neuromorphic computing.Through phase portraits and nonlinear dynamics analysis,we validate the system’s stability and robustness under diverse workloads.These advancements position SNNs as a transformative technology for applications in robotics,IoT,and adaptive low-power AI systems,paving the way for future innovations in neuromorphic hardware and hybrid learning paradigms.