期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Evolution of spiking neural networks
1
作者 TALANOV Max fedorova alina +2 位作者 KIPELKIN Ivan VALLVERDU Jordi EROKHIN Victor 《宁波大学学报(理工版)》 2025年第2期59-70,共12页
Spiking neural networks(SNNs)represent a biologically-inspired computational framework that bridges neuroscience and artificial intelligence,offering unique advantages in temporal data processing,energy efficiency,and... Spiking neural networks(SNNs)represent a biologically-inspired computational framework that bridges neuroscience and artificial intelligence,offering unique advantages in temporal data processing,energy efficiency,and real-time decision-making.This paper explores the evolution of SNN technologies,emphasizing their integration with advanced learning mechanisms such as spike-timing-dependent plasticity(STDP)and hybridization with deep learning architectures.Leveraging memristors as nanoscale synaptic devices,we demonstrate significant enhancements in energy efficiency,adaptability,and scalability,addressing key challenges in neuromorphic computing.Through phase portraits and nonlinear dynamics analysis,we validate the system’s stability and robustness under diverse workloads.These advancements position SNNs as a transformative technology for applications in robotics,IoT,and adaptive low-power AI systems,paving the way for future innovations in neuromorphic hardware and hybrid learning paradigms. 展开更多
关键词 spiking neural networks MEMRISTOR phase portraits energy-efficient AI neuromorphic computing
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部