A model of two oscillating pendula placed on a mobile support is studied. Once an overall scheme of equations, under general assumptions, is formulated via the Lagrangian equations of motion, the specific case of abse...A model of two oscillating pendula placed on a mobile support is studied. Once an overall scheme of equations, under general assumptions, is formulated via the Lagrangian equations of motion, the specific case of absence of escapement is examined. The mechanical model consists of two coupled pendula both oscillating on a moving board attached to a spring. The final result performs selection among the peculiar parameters of the physical process (the length, the ratio of masses, the friction and damping coefficients, and the stiffness of the spring), providing a tendency to synchronization.展开更多
文摘A model of two oscillating pendula placed on a mobile support is studied. Once an overall scheme of equations, under general assumptions, is formulated via the Lagrangian equations of motion, the specific case of absence of escapement is examined. The mechanical model consists of two coupled pendula both oscillating on a moving board attached to a spring. The final result performs selection among the peculiar parameters of the physical process (the length, the ratio of masses, the friction and damping coefficients, and the stiffness of the spring), providing a tendency to synchronization.