The problem of the steady magnetohydrodynamic (MHD) stagnation-point flow of an incompressible viscous fluid over a stretching sheet is studied. The effect of an induced magnetic field is taken into account. The non...The problem of the steady magnetohydrodynamic (MHD) stagnation-point flow of an incompressible viscous fluid over a stretching sheet is studied. The effect of an induced magnetic field is taken into account. The nonlinear partial differential equations are transformed into ordinary differential equations via the similarity transformation. The transformed boundary layer equations are solved numerically using the shooting method. Numerical results are obtained for various magnetic parameters and Prandtl numbers. The effects of the induced magnetic field on the skin friction coefficient, the local Nusselt number, the velocity, and the temperature profiles are presented graphically and discussed in detail.展开更多
The problem of steady laminar magnetohydrodynamic (MHD) mixed con- vection stagnation-point flow of an incompressible viscous fluid over a vertical stretch- ing sheet is studied. The effect of an externally magnetic...The problem of steady laminar magnetohydrodynamic (MHD) mixed con- vection stagnation-point flow of an incompressible viscous fluid over a vertical stretch- ing sheet is studied. The effect of an externally magnetic field is taken into account. The transformed boundary layer equations are solved numerically by using an implicit finite-difference scheme. Numerical results are obtained for various values of the mixed convection parameter, Hartmann number, and Prandtl number. The effects of an exter- nally magnetic field on the skin friction coefficient, local Nusselt number, velocity, and temperature profiles for both A 〉 1 and A ~ 1, where A is the velocity ratio parameter, are presented graphically and discussed in detail. Both assisting and opposing flows are considered, and it is found that dual solutions exist for the opposing flow.展开更多
Superparamgnetic Fe_3O_4 and RE:Fe_3O_4(RE=Dy,Nd,La)nanoparticles with an average crystallite size in the range of 15–24 nm,were synthesized by co-precipitation method.The samples were characterized using X-ray diffr...Superparamgnetic Fe_3O_4 and RE:Fe_3O_4(RE=Dy,Nd,La)nanoparticles with an average crystallite size in the range of 15–24 nm,were synthesized by co-precipitation method.The samples were characterized using X-ray diffraction(XRD),scanning electron microscopy(SEM),vibrating sample magnetometer(VSM),UV–Vis spectroscopy,LCR bridge,and two-probe technique.X-ray diffraction patterns of all the investigated samples reveal the typical phase of magnetite structure,with a small contribution of orthoferrite(NdFeO_3)as a secondary phase in Nd:Fe_3O_4 sample.The saturation magnetization(M_s)of the samples has values in the range from 41.8 to 52.3 emu/g,and decreases with RE ion doping depending on the ionic radius.Negligible values of the coercivity H_c and remanenceM_r,indicate the superparamagnetic nature of the investigated samples.The calculated values of indirect optical band gap of Fe_3O_4 and RE:Fe_3O_4 nanoparticles are in the range of0.9–1.25 eV.The dielectric constant of the samples decreases,while their activation energy increases with the increasing of ionic radii of dopants.展开更多
基金supported by the Fundamental Research Grant Scheme (FRGS) of the Ministry of Higher Education (MOHE) of Malaysia (No. UKM-ST-07-FRGS0036-2009)
文摘The problem of the steady magnetohydrodynamic (MHD) stagnation-point flow of an incompressible viscous fluid over a stretching sheet is studied. The effect of an induced magnetic field is taken into account. The nonlinear partial differential equations are transformed into ordinary differential equations via the similarity transformation. The transformed boundary layer equations are solved numerically using the shooting method. Numerical results are obtained for various magnetic parameters and Prandtl numbers. The effects of the induced magnetic field on the skin friction coefficient, the local Nusselt number, the velocity, and the temperature profiles are presented graphically and discussed in detail.
基金supported by the Fundamental Research Grant Scheme(FRGS)from the Ministry of HigherEducation in Malaysia(No.5524295)the Research University Grant from the Universiti Kebangsaan Malaysia(No.GUP-2013-040)
文摘The problem of steady laminar magnetohydrodynamic (MHD) mixed con- vection stagnation-point flow of an incompressible viscous fluid over a vertical stretch- ing sheet is studied. The effect of an externally magnetic field is taken into account. The transformed boundary layer equations are solved numerically by using an implicit finite-difference scheme. Numerical results are obtained for various values of the mixed convection parameter, Hartmann number, and Prandtl number. The effects of an exter- nally magnetic field on the skin friction coefficient, local Nusselt number, velocity, and temperature profiles for both A 〉 1 and A ~ 1, where A is the velocity ratio parameter, are presented graphically and discussed in detail. Both assisting and opposing flows are considered, and it is found that dual solutions exist for the opposing flow.
基金the Deanship of Scientific Research at King Khalid University for funding this work through General Research Project under grant number G.R.P-310-38
文摘Superparamgnetic Fe_3O_4 and RE:Fe_3O_4(RE=Dy,Nd,La)nanoparticles with an average crystallite size in the range of 15–24 nm,were synthesized by co-precipitation method.The samples were characterized using X-ray diffraction(XRD),scanning electron microscopy(SEM),vibrating sample magnetometer(VSM),UV–Vis spectroscopy,LCR bridge,and two-probe technique.X-ray diffraction patterns of all the investigated samples reveal the typical phase of magnetite structure,with a small contribution of orthoferrite(NdFeO_3)as a secondary phase in Nd:Fe_3O_4 sample.The saturation magnetization(M_s)of the samples has values in the range from 41.8 to 52.3 emu/g,and decreases with RE ion doping depending on the ionic radius.Negligible values of the coercivity H_c and remanenceM_r,indicate the superparamagnetic nature of the investigated samples.The calculated values of indirect optical band gap of Fe_3O_4 and RE:Fe_3O_4 nanoparticles are in the range of0.9–1.25 eV.The dielectric constant of the samples decreases,while their activation energy increases with the increasing of ionic radii of dopants.