3-mm-thick 5083Al-H19 rolled plates were friction stir welded(FSW) at tool rotation rates of 800 and200 rpm with and without additional water cooling. With decreasing the rotation rate and applying water cooling, soft...3-mm-thick 5083Al-H19 rolled plates were friction stir welded(FSW) at tool rotation rates of 800 and200 rpm with and without additional water cooling. With decreasing the rotation rate and applying water cooling, softening in the FSW joint was significantly reduced. At a low rotation rate of 200 rpm with additional water cooling, almost no obvious softening was observed in the FSW joint, and therefore a FSW5083Al-H19 joint with nearly equal strength to the base material(BM) was obtained. Furthermore, the grains in the nugget zone were considerably refined with reducing the heat input and ultrafine equiaxed grains of about 800 nm were obtained in the lowest heat input condition. This work provides an effective method to achieve high property FSW joints of precipitate-hardened and work-hardened Al alloys.展开更多
During the multi-stage processing of advanced high-strength steels, the austenite-to-ferrite transformation, generally as a precursor of the formation of other non-equilibrium or metastable structures, has a severe ef...During the multi-stage processing of advanced high-strength steels, the austenite-to-ferrite transformation, generally as a precursor of the formation of other non-equilibrium or metastable structures, has a severe effect on the subsequent phase transformations. Herein, a more flexible kinetic and microstructural predictive modeling for the key austenite-to-ferrite transformation of Fe-C-Mn-Si steels was developed,in combination with the classical nucleation theory, the general mixed-mode growth model based on Gibbs energy balance, the microstructural path method and the kinetic framework for grain boundary nucleation. Adopting a bounded, extended matrix space corresponding to a single ferrite grain, both softimpingement and hard-impingement can be naturally included in the current modeling. Accordingly, this model outputs the ferrite volume fraction, the austenite/ferrite interface area per unit volume, and the average grain size of ferrite, which will serve as the input parameters for modeling the subsequent bainite or martensite transformations. Applying the model, this work successfully predicts the experiment measurement of the isothermal austenite-to-ferrite transformation in Fe-0.17 C-0.91 Mn-1.03 Si(wt%) steel at different temperatures and explains why the final-state average grain size of ferrite has a maximum at the moderate annealing temperature. Effectiveness and advantages of the present model are discussed arising from kinetics and thermodynamics accompanied with nucleation, growth and impingement.展开更多
Aiming to design stable nanocrystalline(NC)materials,so far,it has been proposed to construct nanostructure stability maps in terms of thermodynamic parameters,while kinetic stabilization has seldom been considered,de...Aiming to design stable nanocrystalline(NC)materials,so far,it has been proposed to construct nanostructure stability maps in terms of thermodynamic parameters,while kinetic stabilization has seldom been considered,despite the synergy of thermodynamics and kinetics.Consequently,the thermodynamically stabilized NC materials may be easily subjected to grain growth at high temperatures due to the weakly kinetic stabilization.Starting from the thermo-kinetic synergy,a stabilization criterion is proposed as a function of intrinsic solute parameters(e.g.the activation energy for bulk diffusion and the segregation enthalpy),intrinsic solvent parameters(e.g.the intrinsic activation energy for GB migration and the GB energy)and processing parameters(e.g.the grain size,the temperature and the solute concentration).Using first-principles calculations for a series of combinations between fifty-one substitutional alloying atoms as solute atoms and Fe atom as fixed solvent atom,it is shown that the thermal stability neither simply increases with increasing the segregation enthalpy as expected by thermodynamic stabilization,nor monotonically increases with increasing the activation energy for bulk diffusion as described by kinetic stabilization.By combination of thermodynamic and kinetic contributions,the current stabilization criterion evaluates quantitatively the thermal stability,thus permitting convenient comparisons among NC materials involved by various combinations of the solute atoms,the solvent atoms,or the processing conditions.Validity of this thermo-kinetic stabilization criterion has been tested by current experiment results of Fe-Y alloy and previously published data of Fe-Ni,Fe-Cr,Fe-Zr and Fe-Ag alloys,etc.,which opens a new window for designing NC materials with sufficiently high thermal stability and sufficiently small grain size.展开更多
The eutectic Ag-Cu alloys exhibiting fine Ag-Cu lamellar eutectic structure formed upon rapid solidification have great potentials being used in various engineering fields.However,the desired fine primary lamellar eut...The eutectic Ag-Cu alloys exhibiting fine Ag-Cu lamellar eutectic structure formed upon rapid solidification have great potentials being used in various engineering fields.However,the desired fine primary lamellar eutectic structure(PLES)is usually replaced by a coarse anomalous eutectic structure(AES)when the undercooling prior to solidification exceeds a certain value.The forming mechanism of AES in the undercooled eutectic Ag-Cu alloy has been a controversial issue.In this work,the undercooled Ag-39.9 at.% Cu eutectic alloy is solidified under different cooling conditions by using techniques of melt fluxing and copper mold casting.The results show that the coupled eutectic growth of this alloy undergoes a transition from a slow eutectic-cellular growth(ECG)to a rapid eutectic-dendritic growth(EDG)above a undercooling of 72 K,accompanying with an abrupt change of the distribution and amount of AES in as-solidified microstructures.Two kinds of primary lamellar eutectic structures are formed by ECG and EDG during recalescence,respectively.The destabilization of PLES that causes the formation of AES is ascribed to two different mechanisms based on the microstructural examination and theoretical calculations.Below 72 K,the destabilization of PLES formed by slow ECG is caused by the mechanism of"termination migration"driven by interfacial energy.While above 72 K,the destabilization of PLES formed by rapid EDG is attributed to the unstable perturbation of interface driven by interfacial energy and solute supersaturation.展开更多
In 2018,the STAR collaboration collected data from^(96)_(44)Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zr at√^(S)NN=200 Ge V to search for the presence of the chiral magnetic effect in collisions of nuclei.The isobar ...In 2018,the STAR collaboration collected data from^(96)_(44)Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zr at√^(S)NN=200 Ge V to search for the presence of the chiral magnetic effect in collisions of nuclei.The isobar collision species alternated frequently between 9644 Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zr.In order to conduct blind analyses of studies related to the chiral magnetic effect in these isobar data,STAR developed a three-step blind analysis procedure.Analysts are initially provided a"reference sample"of data,comprised of a mix of events from the two species,the order of which respects time-dependent changes in run conditions.After tuning analysis codes and performing time-dependent quality assurance on the reference sample,analysts are provided a species-blind sample suitable for calculating efficiencies and corrections for individual≈30-min data-taking runs.For this sample,species-specific information is disguised,but individual output files contain data from a single isobar species.Only run-by-run corrections and code alteration subsequent to these corrections are allowed at this stage.Following these modifications,the"frozen"code is passed over the fully un-blind data,completing the blind analysis.As a check of the feasibility of the blind analysis procedure,analysts completed a"mock data challenge,"analyzing data from Au+Au collisions at√^(S)NN=27 Ge V,collected in 2018.The Au+Au data were prepared in the same manner intended for the isobar blind data.The details of the blind analysis procedure and results from the mock data challenge are presented.展开更多
The strength of polycrystalline metals increases with decreasing grain size,following the classical HallPetch relationship.However,this relationship fails when softening occurs at very small grain sizes(typically less...The strength of polycrystalline metals increases with decreasing grain size,following the classical HallPetch relationship.However,this relationship fails when softening occurs at very small grain sizes(typically less than 10 to 20 nm),which limits the development of ultrahigh-strength materials.In this work,using columnar-grained nanocrystalline Cu-Ag‘samples’,molecular dynamics simulations were performed to investigate the softening mechanism and explore the strengthening strategies(e.g.,formation of solid solution or grain boundary(GB)segregation)in extremely fine nanograined metals.Accordingly,the softening of pure metals is induced by atomic sliding in the GB layer,rather than dislocation activities in the grain interior,although both occur during deformation.The solid solution lowers the stacking fault energy and increases the GB energy,which leads to the softening of NC metals.GB segregation stabilizes GB structures,which causes a notable improvement in strength,and this improvement can be further enhanced by optimizing the solute concentration and GB excess.This work deepens the understanding of the softening mechanism due to atomic sliding in the GB layer and the strengthening mechanism arising from tailoring the GB stability of immiscible alloys and provides insights into the design of ultrahighstrength materials.展开更多
Stability of grain structure,dislocation ordering and strengthening mechanisms of the naturally aged AlCu-Mg alloy after solution treatment are investigated by using optical microscope(OM),scanning electron microscope...Stability of grain structure,dislocation ordering and strengthening mechanisms of the naturally aged AlCu-Mg alloy after solution treatment are investigated by using optical microscope(OM),scanning electron microscope(SEM),electron back-scattered diffraction(EBSD),X-ray diffraction(XRD) and transmission electron microscope(TEM).Results show that {100}<001>,{100}<110>,{110}<110> and {110}<001>slip systems can be activated after solution treatment,which can promote the formation of {110}<001>Goss texture.The combination effect of T-Al_(20)Cu_(2) Mn_(3) phase and Goss-oriented grains with large Taylor factor makes the solution-treated alloys display excellent stability of grain structure.The enhanced yield strength of the alloy is ascribed to grain-refine strengthening,dispersed particles strengthening,dislocation strengthening and texture strengthening.The coarsening of the second phase is responsible for softening of the alloy after annealing at 400 ℃+solution treatment at 475 ℃.展开更多
Grain-boundary(GB)precipitation has a significant adverse effect on plasticity of alloys,which easily leads to catastrophic intergranular failure in safety-critical applications under high external loading.Herein,we r...Grain-boundary(GB)precipitation has a significant adverse effect on plasticity of alloys,which easily leads to catastrophic intergranular failure in safety-critical applications under high external loading.Herein,we report a novel strategy that uses the local stress concentration induced by GB precipitates as a driving force to trigger phase transformation of preset non-equiatomic high-entropy solid-solution phase at GBs.This in situ deformation-induced phase transformation at GBs introduces a well-known effect:transformation-induced plasticity(TRIP),which enables an exceptional elongation to fracture(above 38%)at a high strength(above 1.5 GPa)in a GB precipitation-hardened high-entropy alloy(HEA).The present strategy in terms of"local stress concentration-induced phase transformations at GBs"may provide a fundamental approach by taking advantage of(rather than avoiding)the GB precipitation to gain a superior combination of high strength and high ductility in HEAs.展开更多
This paper presents an efficient numerical method for solving the Euler equations on rectilinear grids. Wall boundary conditions on the surface of an airfoil are implemented by using their first order expansions on th...This paper presents an efficient numerical method for solving the Euler equations on rectilinear grids. Wall boundary conditions on the surface of an airfoil are implemented by using their first order expansions on the airfoil chord line, which is placed along a grid line. However, the method is not restricted to flows with small disturbances since there are no restrictions on the magnitude of the velocity or pressure perturbations. The mathematical formulation and the numerical implementation of the wall boundary conditions in a finite volume Euler code are described. Steady transonic flows are calculated about the NACA 0006, NACA 0012 and NACA 0015 airfoils, corresponding to thickness ratios of 6%, 12%, and 15%, respectively. The computed results, including surface pressure distributions, the lift coefficient, the wave drag coefficient, and the pitching moment coefficient, at angles of attack from 0° to 8° are compared with solutions at the same conditions by FLO52, a well established Euler code using body fitted curvilinear grids. Results demonstrate that the method yields acceptable accuracies even for the relatively thick NACA 0015 airfoil and at high angles of attack. This study establishes the potential of extending the method to computing unsteady fluid structure interaction problems, where the use of a stationary rectilinear grid offers substantial advantages in both computer time and human work since it would not require the generation of time dependent body fitted grids.展开更多
Using dislocation-based constitutive modeling in three-dimension crystal plasticity finite element(3D CPFE)simulations,co-deformation and instability of hetero-phase interface in different material systems were herein...Using dislocation-based constitutive modeling in three-dimension crystal plasticity finite element(3D CPFE)simulations,co-deformation and instability of hetero-phase interface in different material systems were herein studied for polycrystalline metal matrix composites(MMCs).Local stress and strain fields in two types of 3layer MMCs such as fcc/fcc Cu-Ag and fcc/bcc Cu-Nb have been predicted under simple compressive deformations.Accordingly,more severe strain-induced interface instability can be observed in the fcc/bcc systems than in the fcc/fcc systems upon refining to metallic nanolayered composites(MNCs).By detailed analysis of stress and strain localization,it has been demonstrated that the interface instability is always accompanied by high-stress concentration,i.e.,thermodynamic characteristics,or high strain prevention i.e.,kinetic characteristics,at the hetero-phase interface.It then follows that the thermodynamic driving forceG and the kinetic energy barrier Q during dislocation and shear banding can be adopted to classify the deformation modes,following the so-called thermo-kinetic correlation.Then by inserting a high density of high-energy interfaces into the Cu-Nb composites,such thermo-kinetic integration at the hetero-phase interface allows a successful establishment of MMCs with the high△G-high Q deformation mode,which ensures high hardening and uniform strain distri-bution,thus efficiently suppressing the shear band,stabilizing the hetero-phase interface,and obtaining an exceptional combination in strength and ductility.Such hetero-phase interface chosen by a couple of thermodynamics and kinetics can be defined as breaking the thermo-kinetic correlation and has been proposed for artificially designing MNCs.展开更多
Second-phase particle pinning has been well known as a mechanism impeding grain boundary (GB) migration, and thus, is documented as an efficient approach for stabilizing nanocrystalline (NC) materials at elevated ...Second-phase particle pinning has been well known as a mechanism impeding grain boundary (GB) migration, and thus, is documented as an efficient approach for stabilizing nanocrystalline (NC) materials at elevated temperatures. The pinning force exerted by interaction between small dispersed particles and GBs strongly depends on size and volume fraction of the particles. Since metallic oxides, e.g. Al2O3, exhibit great structural stability and high resistance against coarsening at high temperatures, they are expected as effective stabilizers for NC materials. In this work, NC composites consisting of NC Fe and Al2O3 nanoparticIes with different amounts and sizes were prepared by high energy ball milling and annealed at various temperatures (Tann) for different time periods (tann). Microstructures of the ball milled and annealed samples were examined by X-ray diffraction and transmission electron microscopy. The results show that the addition of Al2O3 nanoparticles not only enhances the thermal stability of NC Fe grains but also reduces their coarsening rate at elevated temperatures, and reducing the particle size and/or increasing its amount enhance the stabilizing effect of the Al2O3 particles on the NC Fe grains.展开更多
Bainite transformation has yet to be utilized and even thoroughly studied in medium Mn steels.Here,we investigate the isothermal bainite transformation in a 10Mn steel at 450°C experimentally and theoretically,fo...Bainite transformation has yet to be utilized and even thoroughly studied in medium Mn steels.Here,we investigate the isothermal bainite transformation in a 10Mn steel at 450°C experimentally and theoretically,focusing on the effect of dislocations introduced by warm deformation.We show that the bainite transformation in the studied medium Mn steel exhibits extremely sluggish kinetics(on a time scale of days),concurrent with the pearlite formation.The introduced dislocations can significantly accelerate bainite transformation kinetics while also facilitating the pearlite reaction.This is likely the first report on the simultaneous occurrence of these two solid-state reactions in medium Mn steels.With respect to the roles of dislocations in the acceleration of bainite transformation observed in this work,we propose a new‘carbon depletion mechanism’,in which dislocations-stimulated pearlite formation makes a twofold contribution:facilitating the formation of bainitic ferrite sub-units to further enhance the autocatalytic effect and preventing the carbon enrichment in the remaining austenite.On this basis,a physical model is developed to quantitatively understand the bainite transformation kinetics considering the effect of concurrent pearlite formation,revealing good agreements between model descriptions and experiment results.Our findings,herein,offer fundamental insights into the bainite transformation in medium Mn steels and uncover a previously unidentified role played by introduced dislocations in influencing the kinetics of bainite formation,which may guide its future application in manipulating microstructure for the development of advanced high-strength steels.展开更多
Microstructures of nanoporous Pd are essentially important for its physical and chemical properties.In this work,we show that the microstructures of nanoporous Pd can be tuned by adjusting compositions of the precurso...Microstructures of nanoporous Pd are essentially important for its physical and chemical properties.In this work,we show that the microstructures of nanoporous Pd can be tuned by adjusting compositions of the precursor alloys,and dealloying and heat treatment parameters.Both the ligament and pore sizes decrease with increasing the electrochemical potential upon dealloying and the concentration of noble component in the precursor alloys.Heat treatment causes coarsening of the nanoporous structure.Above a critical temperature,the nanoporous structures are subjected to significant coarsening.Below the critical temperature,surface diffusion is believed to dominate the coarsening process.Above the critical temperature,the nanoporous structure coarsens remarkably at a rather high rate,which is ascribed to a multiple-mechanism controlled process.展开更多
Two carboxylation processes were carried out to modify multi-walled carbon nanot ube bundles (m-MWNTs). The results showed that both of the m-MWNTs could be high ly dispersed in water with the concentration up to 25 a...Two carboxylation processes were carried out to modify multi-walled carbon nanot ube bundles (m-MWNTs). The results showed that both of the m-MWNTs could be high ly dispersed in water with the concentration up to 25 and 15mg/mL in ethanol wit hout obvious deposition or conglomeration over 6 months. FTIR, Raman, TGA and TE M characterizations of the m- MWNTs showed that hydroxyl and carboxyl groups hav e been attached with MWNTs, and that the nanotube structure was only damaged a l ittle after modification treatments in mixed acids over 24h. Above prepared nano tube suspensions in water were successfully used as a filler of thermoplastic PV A composite to enhance its electrical conductivity. The results showed that the addition of m-MWNTs greatly improved the conductivity and the threshold of mass fraction was about 5wt%. The results also proved that purification process was n ot needed because of high purity of the raw MWNTs prepared in our group.展开更多
Dopants play a critical role in tailoring the microstructure during sintering of compacts. These dopants may form solid solution within the bulk, and/or segregate to the grain boundaries(GBs) and the solidvapor inte...Dopants play a critical role in tailoring the microstructure during sintering of compacts. These dopants may form solid solution within the bulk, and/or segregate to the grain boundaries(GBs) and the solidvapor interfaces(free surfaces), each causing a distinct energetic scenario governing mass transports during densification and grain growth. In this work, the forces controlling the dopant distribution, in particular the possibility of concurrent segregation at both surfaces and GBs, are discussed based on the respective enthalpy of segregation. An equation is derived based on the minimum Gibbs energy of the system to determine enthalpy of segregation from experimental interface energy data, and the results applied to depict the role of La as a dopant on the interface energetics of yttria stabilized zirconia during its final stage of sintering. It is shown that La substantially decreases both GB and surface energies(differently)as sintering progresses, dynamically affecting its driving forces, and consequent grain growth and densification in this stage.展开更多
This paper presents an efficient numerical method for solving the unsteady Euler equations on stationary Cartesian grids. Wall boundary conditions are implemented on non moving mean wall positions by assuming the airf...This paper presents an efficient numerical method for solving the unsteady Euler equations on stationary Cartesian grids. Wall boundary conditions are implemented on non moving mean wall positions by assuming the airfoil being thin and undergoing small deformation, but the mean angle of attack of the body can still be large and we use the full nonlinear Euler equation in the field for accurate resolution of shock waves and vorticity. The method does not require the generation of moving body fitted grids and thus can be easily deployed in any fluid structure interaction problem involving relatively small deformation of a thin body. We use the first order wall boundary conditions in solving the full Euler equation. Unsteady transonic flow is calculated about an oscillating NACA 0012 airfoil at free stream Mach number M ∞ =0.755, mean angle of attack α m =0.016, amplitude of pitching oscillation α 0 =2.51, reduced frequency κ = 0.081 4. The computed results, including surface pressure distribution, instantaneous lift and moment coefficients are compared with known experimental data. It is shown that the first order boundary conditions are satisfactory for airfoils of typical thicknesses with small deformation for unsteady calculations.展开更多
By analyzing ψ(3686) data sample containing (107.7±0.6)×10^(6) events taken with the BESIII detector at the BEPCII storage ring in 2009,the χ_(c 0) resonance parameters are precisely measured using χ_(c 0...By analyzing ψ(3686) data sample containing (107.7±0.6)×10^(6) events taken with the BESIII detector at the BEPCII storage ring in 2009,the χ_(c 0) resonance parameters are precisely measured using χ_(c 0,c 2)→π^(+)π^(−)/K^(+)K^(−) events.The mass of χ_(c 0) is determined to be M (χ_(c 0))=(3415.63±0.07±0.07±0.07)MeV/c^(2),and its full width is F (χ_(c 0))=(12.52±0.12±0.13)MeV,where the first uncertainty is statistical,the second systematic,and the third for mass comes from χ_(c 2) mass uncertainty.These measurements improve the precision of χ_(c 0) mass by a factor of four and width by one order of magnitude over the previous individual measurements,and significantly boost our knowledge about the charmonium spectrum.Together with additional (345.4±2.6)×10^(6)(3686) data events taken in 2012,the decay branching fractions of χ_(c 0,c 2)→π^(+)π^(−)/K^(+)K^(−) are measured as well,with precision improved by a factor of three compared to previous measurements.These χ_(c 0) decay branching fractions provide important inputs for the study of glueballs.展开更多
Using 20.3 fb^(-1)of e^(+)e^(-)annihilation data collected at a center-of-mass energy of 3.773 GeV with the BESⅢdetector,we report on an improved search for the radiative leptonic decay D^(+)→γe^(+)ve.An upper limi...Using 20.3 fb^(-1)of e^(+)e^(-)annihilation data collected at a center-of-mass energy of 3.773 GeV with the BESⅢdetector,we report on an improved search for the radiative leptonic decay D^(+)→γe^(+)ve.An upper limit on its partial branching fraction for photon energies E_(γ)>10 MeV was determined to be 1.2×10^(-5)at a 90%confidence level;this excludes most current theoretical predictions.A sophisticated deep learning approach,which includes thorough validation and is based on the Transformer architecture,was implemented to efficiently distinguish the signal from massive backgrounds.展开更多
Using an electron-positron collision data sample corresponding to(1.0087±0.0044)×10^(10)events collected using the BESIII detector at the BEPCII collider,we firstly search for the lepton number violation de...Using an electron-positron collision data sample corresponding to(1.0087±0.0044)×10^(10)events collected using the BESIII detector at the BEPCII collider,we firstly search for the lepton number violation decayφ→π^(+)π^(+)e^(-)e^(-)via J/ψ→φη.No obviously signals are found.The upper limit on the branching fraction ofφ→π^(+)π^(+)e^(-)e^(-)is set to be 1.3×10^(-5)at the 90%confidence level.展开更多
基金supported by the National Natural Science Foundation of China under grant Nos. 51301178 and 51331008
文摘3-mm-thick 5083Al-H19 rolled plates were friction stir welded(FSW) at tool rotation rates of 800 and200 rpm with and without additional water cooling. With decreasing the rotation rate and applying water cooling, softening in the FSW joint was significantly reduced. At a low rotation rate of 200 rpm with additional water cooling, almost no obvious softening was observed in the FSW joint, and therefore a FSW5083Al-H19 joint with nearly equal strength to the base material(BM) was obtained. Furthermore, the grains in the nugget zone were considerably refined with reducing the heat input and ultrafine equiaxed grains of about 800 nm were obtained in the lowest heat input condition. This work provides an effective method to achieve high property FSW joints of precipitate-hardened and work-hardened Al alloys.
基金financially supported by the National Key R&D Program of China (Nos. 2017YFB0703001 and 2017YFB0305100)the National Natural Science Foundation of China (Nos. 51134011, 51431008, 51790483 and 51801157)+4 种基金the Fundamental Research Funds for the Central Universities (No. 3102017zy064)the Research Fund of the State Key Laboratory of Solidification Processing (Nos. 117-TZ-2015, 159-QP-2016)the Analytical & Testing Center of Northwestern Polytechnical University for Equipment Supportfinancial support from the Top International University Visiting Program for Outstanding Young Scholars of Northwestern Polytechnical Universitythe China Scholarship Council (CSC) Scholarship
文摘During the multi-stage processing of advanced high-strength steels, the austenite-to-ferrite transformation, generally as a precursor of the formation of other non-equilibrium or metastable structures, has a severe effect on the subsequent phase transformations. Herein, a more flexible kinetic and microstructural predictive modeling for the key austenite-to-ferrite transformation of Fe-C-Mn-Si steels was developed,in combination with the classical nucleation theory, the general mixed-mode growth model based on Gibbs energy balance, the microstructural path method and the kinetic framework for grain boundary nucleation. Adopting a bounded, extended matrix space corresponding to a single ferrite grain, both softimpingement and hard-impingement can be naturally included in the current modeling. Accordingly, this model outputs the ferrite volume fraction, the austenite/ferrite interface area per unit volume, and the average grain size of ferrite, which will serve as the input parameters for modeling the subsequent bainite or martensite transformations. Applying the model, this work successfully predicts the experiment measurement of the isothermal austenite-to-ferrite transformation in Fe-0.17 C-0.91 Mn-1.03 Si(wt%) steel at different temperatures and explains why the final-state average grain size of ferrite has a maximum at the moderate annealing temperature. Effectiveness and advantages of the present model are discussed arising from kinetics and thermodynamics accompanied with nucleation, growth and impingement.
基金financial support from the National Key R&D Program of China(Nos.2017YFB0703001,2017YFB0305100)the National Natural Science Foundation of China(Nos.51134011,51431008)+1 种基金the Research Fund of the State Key Laboratory of Solidification Processing(Nos.117-TZ-2015,159QP-2016)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(No.CX201826)。
文摘Aiming to design stable nanocrystalline(NC)materials,so far,it has been proposed to construct nanostructure stability maps in terms of thermodynamic parameters,while kinetic stabilization has seldom been considered,despite the synergy of thermodynamics and kinetics.Consequently,the thermodynamically stabilized NC materials may be easily subjected to grain growth at high temperatures due to the weakly kinetic stabilization.Starting from the thermo-kinetic synergy,a stabilization criterion is proposed as a function of intrinsic solute parameters(e.g.the activation energy for bulk diffusion and the segregation enthalpy),intrinsic solvent parameters(e.g.the intrinsic activation energy for GB migration and the GB energy)and processing parameters(e.g.the grain size,the temperature and the solute concentration).Using first-principles calculations for a series of combinations between fifty-one substitutional alloying atoms as solute atoms and Fe atom as fixed solvent atom,it is shown that the thermal stability neither simply increases with increasing the segregation enthalpy as expected by thermodynamic stabilization,nor monotonically increases with increasing the activation energy for bulk diffusion as described by kinetic stabilization.By combination of thermodynamic and kinetic contributions,the current stabilization criterion evaluates quantitatively the thermal stability,thus permitting convenient comparisons among NC materials involved by various combinations of the solute atoms,the solvent atoms,or the processing conditions.Validity of this thermo-kinetic stabilization criterion has been tested by current experiment results of Fe-Y alloy and previously published data of Fe-Ni,Fe-Cr,Fe-Zr and Fe-Ag alloys,etc.,which opens a new window for designing NC materials with sufficiently high thermal stability and sufficiently small grain size.
基金the National Natural Science Foundation of China(Nos.51771153,51371147,51790481 and 51431008)the Innovation Guidance Support Project for Taicang Top Research Institutes(No.TC2018DYDS20)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX201825)。
文摘The eutectic Ag-Cu alloys exhibiting fine Ag-Cu lamellar eutectic structure formed upon rapid solidification have great potentials being used in various engineering fields.However,the desired fine primary lamellar eutectic structure(PLES)is usually replaced by a coarse anomalous eutectic structure(AES)when the undercooling prior to solidification exceeds a certain value.The forming mechanism of AES in the undercooled eutectic Ag-Cu alloy has been a controversial issue.In this work,the undercooled Ag-39.9 at.% Cu eutectic alloy is solidified under different cooling conditions by using techniques of melt fluxing and copper mold casting.The results show that the coupled eutectic growth of this alloy undergoes a transition from a slow eutectic-cellular growth(ECG)to a rapid eutectic-dendritic growth(EDG)above a undercooling of 72 K,accompanying with an abrupt change of the distribution and amount of AES in as-solidified microstructures.Two kinds of primary lamellar eutectic structures are formed by ECG and EDG during recalescence,respectively.The destabilization of PLES that causes the formation of AES is ascribed to two different mechanisms based on the microstructural examination and theoretical calculations.Below 72 K,the destabilization of PLES formed by slow ECG is caused by the mechanism of"termination migration"driven by interfacial energy.While above 72 K,the destabilization of PLES formed by rapid EDG is attributed to the unstable perturbation of interface driven by interfacial energy and solute supersaturation.
文摘In 2018,the STAR collaboration collected data from^(96)_(44)Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zr at√^(S)NN=200 Ge V to search for the presence of the chiral magnetic effect in collisions of nuclei.The isobar collision species alternated frequently between 9644 Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zr.In order to conduct blind analyses of studies related to the chiral magnetic effect in these isobar data,STAR developed a three-step blind analysis procedure.Analysts are initially provided a"reference sample"of data,comprised of a mix of events from the two species,the order of which respects time-dependent changes in run conditions.After tuning analysis codes and performing time-dependent quality assurance on the reference sample,analysts are provided a species-blind sample suitable for calculating efficiencies and corrections for individual≈30-min data-taking runs.For this sample,species-specific information is disguised,but individual output files contain data from a single isobar species.Only run-by-run corrections and code alteration subsequent to these corrections are allowed at this stage.Following these modifications,the"frozen"code is passed over the fully un-blind data,completing the blind analysis.As a check of the feasibility of the blind analysis procedure,analysts completed a"mock data challenge,"analyzing data from Au+Au collisions at√^(S)NN=27 Ge V,collected in 2018.The Au+Au data were prepared in the same manner intended for the isobar blind data.The details of the blind analysis procedure and results from the mock data challenge are presented.
基金financially supported by the National Key R&D Program of China(No.2017YFB0703001)the Natural Science Foundation of China(Nos.51971166,51790481 and 52130110)+2 种基金the Fundamental Research Funds for the Central Universities(No.3102017jc01002)the Natural Science Foundation of Shaanxi Province(No.2021JQ-651)supported by High Performance Computation Center of Northwestern Polytechnical University.
文摘The strength of polycrystalline metals increases with decreasing grain size,following the classical HallPetch relationship.However,this relationship fails when softening occurs at very small grain sizes(typically less than 10 to 20 nm),which limits the development of ultrahigh-strength materials.In this work,using columnar-grained nanocrystalline Cu-Ag‘samples’,molecular dynamics simulations were performed to investigate the softening mechanism and explore the strengthening strategies(e.g.,formation of solid solution or grain boundary(GB)segregation)in extremely fine nanograined metals.Accordingly,the softening of pure metals is induced by atomic sliding in the GB layer,rather than dislocation activities in the grain interior,although both occur during deformation.The solid solution lowers the stacking fault energy and increases the GB energy,which leads to the softening of NC metals.GB segregation stabilizes GB structures,which causes a notable improvement in strength,and this improvement can be further enhanced by optimizing the solute concentration and GB excess.This work deepens the understanding of the softening mechanism due to atomic sliding in the GB layer and the strengthening mechanism arising from tailoring the GB stability of immiscible alloys and provides insights into the design of ultrahighstrength materials.
基金financially sponsored by the National Natural Science Foundation of China (No. 51171209)the National Key Research and Development Program of China (No. 2016YFB0300900)the National Key Fundamental Research Project of China (No.2012CB619506-3)。
文摘Stability of grain structure,dislocation ordering and strengthening mechanisms of the naturally aged AlCu-Mg alloy after solution treatment are investigated by using optical microscope(OM),scanning electron microscope(SEM),electron back-scattered diffraction(EBSD),X-ray diffraction(XRD) and transmission electron microscope(TEM).Results show that {100}<001>,{100}<110>,{110}<110> and {110}<001>slip systems can be activated after solution treatment,which can promote the formation of {110}<001>Goss texture.The combination effect of T-Al_(20)Cu_(2) Mn_(3) phase and Goss-oriented grains with large Taylor factor makes the solution-treated alloys display excellent stability of grain structure.The enhanced yield strength of the alloy is ascribed to grain-refine strengthening,dispersed particles strengthening,dislocation strengthening and texture strengthening.The coarsening of the second phase is responsible for softening of the alloy after annealing at 400 ℃+solution treatment at 475 ℃.
基金supported financially by the National Natural Science Foundation of China(No.51871178)。
文摘Grain-boundary(GB)precipitation has a significant adverse effect on plasticity of alloys,which easily leads to catastrophic intergranular failure in safety-critical applications under high external loading.Herein,we report a novel strategy that uses the local stress concentration induced by GB precipitates as a driving force to trigger phase transformation of preset non-equiatomic high-entropy solid-solution phase at GBs.This in situ deformation-induced phase transformation at GBs introduces a well-known effect:transformation-induced plasticity(TRIP),which enables an exceptional elongation to fracture(above 38%)at a high strength(above 1.5 GPa)in a GB precipitation-hardened high-entropy alloy(HEA).The present strategy in terms of"local stress concentration-induced phase transformations at GBs"may provide a fundamental approach by taking advantage of(rather than avoiding)the GB precipitation to gain a superior combination of high strength and high ductility in HEAs.
文摘This paper presents an efficient numerical method for solving the Euler equations on rectilinear grids. Wall boundary conditions on the surface of an airfoil are implemented by using their first order expansions on the airfoil chord line, which is placed along a grid line. However, the method is not restricted to flows with small disturbances since there are no restrictions on the magnitude of the velocity or pressure perturbations. The mathematical formulation and the numerical implementation of the wall boundary conditions in a finite volume Euler code are described. Steady transonic flows are calculated about the NACA 0006, NACA 0012 and NACA 0015 airfoils, corresponding to thickness ratios of 6%, 12%, and 15%, respectively. The computed results, including surface pressure distributions, the lift coefficient, the wave drag coefficient, and the pitching moment coefficient, at angles of attack from 0° to 8° are compared with solutions at the same conditions by FLO52, a well established Euler code using body fitted curvilinear grids. Results demonstrate that the method yields acceptable accuracies even for the relatively thick NACA 0015 airfoil and at high angles of attack. This study establishes the potential of extending the method to computing unsteady fluid structure interaction problems, where the use of a stationary rectilinear grid offers substantial advantages in both computer time and human work since it would not require the generation of time dependent body fitted grids.
基金support of the National Natural Science Foundation of China(No.52130110 and 51901182)the Research Fund of the State Key Laboratory of Solidification Process-ing(No.2022-TS-01).
文摘Using dislocation-based constitutive modeling in three-dimension crystal plasticity finite element(3D CPFE)simulations,co-deformation and instability of hetero-phase interface in different material systems were herein studied for polycrystalline metal matrix composites(MMCs).Local stress and strain fields in two types of 3layer MMCs such as fcc/fcc Cu-Ag and fcc/bcc Cu-Nb have been predicted under simple compressive deformations.Accordingly,more severe strain-induced interface instability can be observed in the fcc/bcc systems than in the fcc/fcc systems upon refining to metallic nanolayered composites(MNCs).By detailed analysis of stress and strain localization,it has been demonstrated that the interface instability is always accompanied by high-stress concentration,i.e.,thermodynamic characteristics,or high strain prevention i.e.,kinetic characteristics,at the hetero-phase interface.It then follows that the thermodynamic driving forceG and the kinetic energy barrier Q during dislocation and shear banding can be adopted to classify the deformation modes,following the so-called thermo-kinetic correlation.Then by inserting a high density of high-energy interfaces into the Cu-Nb composites,such thermo-kinetic integration at the hetero-phase interface allows a successful establishment of MMCs with the high△G-high Q deformation mode,which ensures high hardening and uniform strain distri-bution,thus efficiently suppressing the shear band,stabilizing the hetero-phase interface,and obtaining an exceptional combination in strength and ductility.Such hetero-phase interface chosen by a couple of thermodynamics and kinetics can be defined as breaking the thermo-kinetic correlation and has been proposed for artificially designing MNCs.
基金the National Key R&D Program of China (Project No. 2017YFB0703001)the National Natural Science Foundation of China (Nos. 51371147, 51101121, 51125002, 51134011, 51771153 and 51431008)+2 种基金the Research Fund of the State Key Lab. of Solidification Processing (NWPU) (No. 146-QZ2016)the Fundamental Research Funds for the Central Universities (No. 3102017jc03008)the Shaanxi Young Stars of Science and Technology (No. 2016KJXX-44) for financial supports
文摘Second-phase particle pinning has been well known as a mechanism impeding grain boundary (GB) migration, and thus, is documented as an efficient approach for stabilizing nanocrystalline (NC) materials at elevated temperatures. The pinning force exerted by interaction between small dispersed particles and GBs strongly depends on size and volume fraction of the particles. Since metallic oxides, e.g. Al2O3, exhibit great structural stability and high resistance against coarsening at high temperatures, they are expected as effective stabilizers for NC materials. In this work, NC composites consisting of NC Fe and Al2O3 nanoparticIes with different amounts and sizes were prepared by high energy ball milling and annealed at various temperatures (Tann) for different time periods (tann). Microstructures of the ball milled and annealed samples were examined by X-ray diffraction and transmission electron microscopy. The results show that the addition of Al2O3 nanoparticles not only enhances the thermal stability of NC Fe grains but also reduces their coarsening rate at elevated temperatures, and reducing the particle size and/or increasing its amount enhance the stabilizing effect of the Al2O3 particles on the NC Fe grains.
基金support from National Key Research and Development Program of China(No.2019YFA0209900)National Natural Science Foundation of China(No.52130102)+5 种基金Research Grants Council of Hong Kong(No.R7066–18)Guangzhou Municipal Science and Technology Project(No.202007020007)Guangdong Basic and Applied Basic Research Foundation of China(No.2020B1515130007)support from National Natural Science Foundation of China(No.52130110)support from National Natural Science Foundation of China(No.52271116)Hong Kong Scholars Program(No.XJ2019029).
文摘Bainite transformation has yet to be utilized and even thoroughly studied in medium Mn steels.Here,we investigate the isothermal bainite transformation in a 10Mn steel at 450°C experimentally and theoretically,focusing on the effect of dislocations introduced by warm deformation.We show that the bainite transformation in the studied medium Mn steel exhibits extremely sluggish kinetics(on a time scale of days),concurrent with the pearlite formation.The introduced dislocations can significantly accelerate bainite transformation kinetics while also facilitating the pearlite reaction.This is likely the first report on the simultaneous occurrence of these two solid-state reactions in medium Mn steels.With respect to the roles of dislocations in the acceleration of bainite transformation observed in this work,we propose a new‘carbon depletion mechanism’,in which dislocations-stimulated pearlite formation makes a twofold contribution:facilitating the formation of bainitic ferrite sub-units to further enhance the autocatalytic effect and preventing the carbon enrichment in the remaining austenite.On this basis,a physical model is developed to quantitatively understand the bainite transformation kinetics considering the effect of concurrent pearlite formation,revealing good agreements between model descriptions and experiment results.Our findings,herein,offer fundamental insights into the bainite transformation in medium Mn steels and uncover a previously unidentified role played by introduced dislocations in influencing the kinetics of bainite formation,which may guide its future application in manipulating microstructure for the development of advanced high-strength steels.
基金supported financially by the National Natural Science Foundation of China(Nos.51771153,51371147,51790481 and 51431008)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(No.CX201825)。
文摘Microstructures of nanoporous Pd are essentially important for its physical and chemical properties.In this work,we show that the microstructures of nanoporous Pd can be tuned by adjusting compositions of the precursor alloys,and dealloying and heat treatment parameters.Both the ligament and pore sizes decrease with increasing the electrochemical potential upon dealloying and the concentration of noble component in the precursor alloys.Heat treatment causes coarsening of the nanoporous structure.Above a critical temperature,the nanoporous structures are subjected to significant coarsening.Below the critical temperature,surface diffusion is believed to dominate the coarsening process.Above the critical temperature,the nanoporous structure coarsens remarkably at a rather high rate,which is ascribed to a multiple-mechanism controlled process.
基金This work was supported by the National Natural Science Foundation of China(No.50172043)National High Technical Research and Development Programme of China(No.2002AA334020)National Key Basic Research and Development Programme of China(No.G20000264-06).
文摘Two carboxylation processes were carried out to modify multi-walled carbon nanot ube bundles (m-MWNTs). The results showed that both of the m-MWNTs could be high ly dispersed in water with the concentration up to 25 and 15mg/mL in ethanol wit hout obvious deposition or conglomeration over 6 months. FTIR, Raman, TGA and TE M characterizations of the m- MWNTs showed that hydroxyl and carboxyl groups hav e been attached with MWNTs, and that the nanotube structure was only damaged a l ittle after modification treatments in mixed acids over 24h. Above prepared nano tube suspensions in water were successfully used as a filler of thermoplastic PV A composite to enhance its electrical conductivity. The results showed that the addition of m-MWNTs greatly improved the conductivity and the threshold of mass fraction was about 5wt%. The results also proved that purification process was n ot needed because of high purity of the raw MWNTs prepared in our group.
基金support of the National Basic Research Program of China (No. 2011CB610403)the National Natural Science Foundation of China (Nos. 51134011 and 51431008)+3 种基金Research Fund of the State Key Laboratory of Solidification Processing (117-TZ-2015)the China National Funds for Distinguished Young Scientists (No. 51125002)supports of the Doctorate Foundation of Northwestern Polytechnical University (No. CX201204)support of the National Science Foundation (No. DMR 1055504)
文摘Dopants play a critical role in tailoring the microstructure during sintering of compacts. These dopants may form solid solution within the bulk, and/or segregate to the grain boundaries(GBs) and the solidvapor interfaces(free surfaces), each causing a distinct energetic scenario governing mass transports during densification and grain growth. In this work, the forces controlling the dopant distribution, in particular the possibility of concurrent segregation at both surfaces and GBs, are discussed based on the respective enthalpy of segregation. An equation is derived based on the minimum Gibbs energy of the system to determine enthalpy of segregation from experimental interface energy data, and the results applied to depict the role of La as a dopant on the interface energetics of yttria stabilized zirconia during its final stage of sintering. It is shown that La substantially decreases both GB and surface energies(differently)as sintering progresses, dynamically affecting its driving forces, and consequent grain growth and densification in this stage.
文摘This paper presents an efficient numerical method for solving the unsteady Euler equations on stationary Cartesian grids. Wall boundary conditions are implemented on non moving mean wall positions by assuming the airfoil being thin and undergoing small deformation, but the mean angle of attack of the body can still be large and we use the full nonlinear Euler equation in the field for accurate resolution of shock waves and vorticity. The method does not require the generation of moving body fitted grids and thus can be easily deployed in any fluid structure interaction problem involving relatively small deformation of a thin body. We use the first order wall boundary conditions in solving the full Euler equation. Unsteady transonic flow is calculated about an oscillating NACA 0012 airfoil at free stream Mach number M ∞ =0.755, mean angle of attack α m =0.016, amplitude of pitching oscillation α 0 =2.51, reduced frequency κ = 0.081 4. The computed results, including surface pressure distribution, instantaneous lift and moment coefficients are compared with known experimental data. It is shown that the first order boundary conditions are satisfactory for airfoils of typical thicknesses with small deformation for unsteady calculations.
基金Supported in part by National Key R&D Program of China(2020YFA0406300,2020YFA0406400,2023YFA1606000)National Natural Science Foundation of China(NSFC)(11635010,11735014,11935015,11935016,11935018,12025502,12035009,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017,12361141819)+17 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1832207)100 Talents Program of CAS(ZR2022JQ02,ZR2024QA151)supported by Shandong Provincial Natural Science Foundationsupported by the China Postdoctoral Science Foundation(2023M742100)The Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyGerman Research Foundation DFG(FOR5327,GRK 2149)Istituto Nazionale di Fisica Nucleare,ItalyKnut and Alice Wallenberg Foundation(2021.0174,2021.0299)Ministry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B16F640076,B50G670107)Polish National Science Centre(2019/35/O/ST2/02907)Swedish Research Council(2019.04595)The Swedish Foundation for International Cooperation in Research and Higher Education(CH2018-7756)U.S.Department of Energy(DE-FG02-05ER41374)。
文摘By analyzing ψ(3686) data sample containing (107.7±0.6)×10^(6) events taken with the BESIII detector at the BEPCII storage ring in 2009,the χ_(c 0) resonance parameters are precisely measured using χ_(c 0,c 2)→π^(+)π^(−)/K^(+)K^(−) events.The mass of χ_(c 0) is determined to be M (χ_(c 0))=(3415.63±0.07±0.07±0.07)MeV/c^(2),and its full width is F (χ_(c 0))=(12.52±0.12±0.13)MeV,where the first uncertainty is statistical,the second systematic,and the third for mass comes from χ_(c 2) mass uncertainty.These measurements improve the precision of χ_(c 0) mass by a factor of four and width by one order of magnitude over the previous individual measurements,and significantly boost our knowledge about the charmonium spectrum.Together with additional (345.4±2.6)×10^(6)(3686) data events taken in 2012,the decay branching fractions of χ_(c 0,c 2)→π^(+)π^(−)/K^(+)K^(−) are measured as well,with precision improved by a factor of three compared to previous measurements.These χ_(c 0) decay branching fractions provide important inputs for the study of glueballs.
基金supported in part by National Key R&D Program of China(2020YFA0406400,2023YFA1606000,2020YFA0406300)National Natural Science Foundation of China(NSFC)(11635010,11735014,11935015,11935016,11935018,12025502,12035009,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017,12361141819)+18 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1832207)CAS(YSBR-101)100 Talents Program of CASCAS Project for Young Scientists in Basic Research(YSBR-117)The Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyAgencia Nacional de Investigación y Desarrollo de Chile(ANID),Chile(ANID PIA/APOYO AFB230003)German Research Foundation DFG(FOR5327)Istituto Nazionale di Fisica Nucleare,ItalyKnut and Alice Wallenberg Foundation(2021.0174,2021.0299)Ministry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B50G670107)Polish National Science Centre(2019/35/O/ST2/02907)Swedish Research Council(2019.04595)The Swedish Foundation for International Cooperation in Research and Higher Education(CH2018-7756)U.S.Department of Energy(DE-FG02-05ER41374)。
文摘Using 20.3 fb^(-1)of e^(+)e^(-)annihilation data collected at a center-of-mass energy of 3.773 GeV with the BESⅢdetector,we report on an improved search for the radiative leptonic decay D^(+)→γe^(+)ve.An upper limit on its partial branching fraction for photon energies E_(γ)>10 MeV was determined to be 1.2×10^(-5)at a 90%confidence level;this excludes most current theoretical predictions.A sophisticated deep learning approach,which includes thorough validation and is based on the Transformer architecture,was implemented to efficiently distinguish the signal from massive backgrounds.
基金supported in part by the National Key R&D Program of China(2020YFA0406300,2020YFA0406400)National Natural Science Foundation of China(NSFC)(12035009,11635010,11735014,11835012,11935015,11935016,11935018,11961141012,12025502,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017)+17 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040)100 Talents Program of CASthe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and Cosmologythe European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement(894790)the German Research Foundation DFG(455635585),the Collaborative Research Center CRC 1044,FOR5327,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyKnut and Alice Wallenberg Foundation(2021.0174,2021.0299)Ministry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF2022R1A2C1092335)National Science and Technology Fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B16F640076)Polish National Science Centre(2019/35/O/ST2/02907)Swedish Research Council(2019.04595)the Swedish Foundation for International Cooperation in Research and Higher Education(CH2018-7756)the U.S.Department of Energy(DE-FG02-05ER41374).
文摘Using an electron-positron collision data sample corresponding to(1.0087±0.0044)×10^(10)events collected using the BESIII detector at the BEPCII collider,we firstly search for the lepton number violation decayφ→π^(+)π^(+)e^(-)e^(-)via J/ψ→φη.No obviously signals are found.The upper limit on the branching fraction ofφ→π^(+)π^(+)e^(-)e^(-)is set to be 1.3×10^(-5)at the 90%confidence level.