期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of solidification cooling rate on microstructure and tribology characteristics of Zn-4Si alloy
1
作者 f.akbari M.Golkaram +5 位作者 S.Beyrami G.Shirazi K.Mantashloo R.Taghiabadi M.Saghafi Yazdi I.Ansarian 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期362-373,共12页
The main objective of this work was to modify the microstructure and enhance the tribological properties of a new Zn-4Si al-loy through a high solidification cooling rate(SCR).According to the results,by increasing th... The main objective of this work was to modify the microstructure and enhance the tribological properties of a new Zn-4Si al-loy through a high solidification cooling rate(SCR).According to the results,by increasing the SCR from 2.0 to 59.5℃/s the average size of primary Si particles and that of the grains reduced from 76.1 and 3780μm to less than about 14.6 and 460μm,respectively.Augment-ing the SCR also enhanced the microstructural homogeneity,decreased the porosity content(by 50%),and increased the matrix hardness(by 36%).These microstructural changes enhanced the tribological behavior.For instance,under the applied pressure of 0.5 MPa,an in-crease in the SCR from 2.0 to 59.5℃/s decreased the wear rate and the average friction coefficient of the alloy by 57%and 23%,respect-ively.The wear mechanism was also changed from the severe delamination,adhesion,and abrasion in the slowly-cooled alloy to the mild tribolayer delamination/abrasion in the high-cooling-rate-solidified sample. 展开更多
关键词 zinc-silicon alloy primary silicon solidification cooling rate TRIBOLOGY sliding wear
在线阅读 下载PDF
Asymmetric Green's functions for exponentially graded transversely isotropic substrate–coating system
2
作者 f.akbari A.Khojasteh M.Rahimian 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期169-184,共16页
By virtue of a complete set of two displacement potentials,an analytical derivation of the elastostatic Green’s functions of an exponentially graded transversely isotropic substrate–coating system is presented.Three... By virtue of a complete set of two displacement potentials,an analytical derivation of the elastostatic Green’s functions of an exponentially graded transversely isotropic substrate–coating system is presented.Three-dimensional point–load and patch–load Green’s functions for stresses and displacements are given in line-integral representations.The formulation includes a complete set of transformed stress–potential and displacement–potential relations,with utilizing Fourier series and Hankel transforms.As illustrations,the present Green’s functions are degenerated to the special cases such as an exponentially graded half-space and a homogeneous two-layered half-space Green’s functions.Because of complicated integrand functions,the integrals are evaluated numerically and for numerical computation of the integrals,a robust and effective methodology is laid out which gives the necessary account of the presence of singularities of integration.Comparisons of the existing numerical solutions for homogeneous two-layered isotropic and transversely isotropic half-spaces are made to confirm the accuracy of the present solutions.Some typical numerical examples are also given to show the general features of the exponentially graded two-layered half-space Green’s functions that the effect of degree of variation of material properties will be recognized. 展开更多
关键词 functionally graded material transversely isotropic BI-MATERIAL Green’s function coating-substrate displacement potential
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部