期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Influences of nonassociated flow rules on three-dimensional seismic stability of loaded slopes 被引量:3
1
作者 N.GANJIAN f.askari O.FARZANEH 《Journal of Central South University》 SCIE EI CAS 2010年第3期603-611,共9页
The influences of soil dilatancy angle on three-dimensional (3D) seismic stability of locally-loaded slopes in nonassociated flow rule materials were investigated using a new rotational collapse mechanism and quasi-... The influences of soil dilatancy angle on three-dimensional (3D) seismic stability of locally-loaded slopes in nonassociated flow rule materials were investigated using a new rotational collapse mechanism and quasi-static coefficient concept. Extended Bishop method and Boussinesq theorem were employed to establish the stress distribution along the rupture surfaces that are required to obtain the rate of internal energy dissipation for the nonassociated flow rule materials in rotational collapse mechanisms. Good agreement was observed by comparing the current results with those obtained using the translational or rotational mechanisms and numerical finite difference method. The results indicate that the seismic stability of slopes reduces by decreasing the dilatancy angle for nonassociated flow rule materials. The amount of the mentioned decrease is more significant in the case of mild slopes in frictional soils. A nearly infinite slope under local loading, whether its critical failure surface is 2D or 3D, not only depends on the magnitude of the external load, but also depends on the dilataney angle of soil and the coefficient of seismic load. 展开更多
关键词 3D slope stability failure analysis nonassociated flow rule
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部