Time series of sea level heights have been collected at different stations along the Cameroon coast. The dataset covers a period ranging from 2007 to 2012. Tide data measured by float type recorders have been digitali...Time series of sea level heights have been collected at different stations along the Cameroon coast. The dataset covers a period ranging from 2007 to 2012. Tide data measured by float type recorders have been digitalized and quality-controlled with tools developed at Laboratoire d’Etudes Géophysique et Océanographie Spatiale (LEGOS). Short gaps in the data have been interpolated while large gaps were not. Tide constituents were retrieved through harmonic analysis using 123 waves having a period ranging from long ones to eighth-diurnal ones. The reconstructed signal is used to assess the quality of both the data and the analysis and the erroneous records were examined and corrected. The effect of the hourly averaging of the raw data on the quality of the analysis is also investigated. The tide constituents having the largest amplitudes are, as expected, the semi-diurnal, diurnal, fourth-diurnal and long term constituents. The major components of semi-diurnal waves are the M2 and S2 tides. The M2 tide height ranges between 0.5 and 0.85 m. The maximum height is found at Cameroon estuary and the minimum at the Kribi station located in the South coast. The S2 constituent varies similarly as the M2 constituent. Its amplitude ranges between 0.18 and 0.52 m. The lowest S2 amplitude occurs also at Kribi station. In the Dibamba estuary the spectrum shows a larger number of significant semi-diurnal and fourth-diurnal waves than other zones. Concerning diurnal waves, the dominant one is the K1 tide and its amplitude is homogeneous along the coast. The influence of the long-term components is the strongest in the Cameroon estuary due to important fluctuations of the rivers run-off.展开更多
This study was carried out under the aegis of the program Surface Water and Ocean Topography (SWOT) associated with the National Center of Space Studies (CNES). The future SWOT mission will offer new opportunities to ...This study was carried out under the aegis of the program Surface Water and Ocean Topography (SWOT) associated with the National Center of Space Studies (CNES). The future SWOT mission will offer new opportunities to survey the hydrodynamic in the rivers because it will provide data on the water level/ discharges with a high spatial resolution (oceans: 1 km, rivers: 100 m of width) and with a global cover. However, it is important to estimate the capacity of SWOT to reproduce the hydrodynamic phenomena in the estuaries and the temporal and the spatial variability of this dynamic. The aim of this paper is 1) to estimate the capacity of SWOT to reproduce the hydrological variability of watersheds, and 2) to validate the use of these data for other zone without hydrometric station. Based on discharge measurements and simulated Surface Water and Ocean Topography (SWOT) data, we have investigated the hydrological variability of the main French rivers (Seine, Loire, Garonne and Rh?ne) by applying a series of statistical analyses to the discharge time series. A frequency analysis has been also used using a technique of wavelet. Results have shown a similar hydrological variability of the four watersheds. Three different periods of hydrologic variability has been identified: before 1970, between 1970 and 1990, and after 1990. Using these analyses, simulated SWOT samples and discharges were compared during the three studied periods. Simulated SWOT data, obtained by a synthetic sampling of river discharges basing on the number of measurements per repeat orbit, reproduce the hydrological variability of rivers. Such reproduction seems to be independent in the number of SWOT passages (from two to four), except for the minimum and maximum annual discharges where number of overpass seems to have an influence. These results were validated by coherence wavelet which underlines coherence higher than 90% between simulated SWOT data and in-situ discharges. Nevertheless, good correlation was not observed for the minimum and the maximum annual discharge with an underestimation for SWOT maximum annual and an overestimation of the minimum annual SWOT ones. Moreover, best identification of minimum, mean and maximum annual discharge depends on SWOT overpasses.展开更多
文摘Time series of sea level heights have been collected at different stations along the Cameroon coast. The dataset covers a period ranging from 2007 to 2012. Tide data measured by float type recorders have been digitalized and quality-controlled with tools developed at Laboratoire d’Etudes Géophysique et Océanographie Spatiale (LEGOS). Short gaps in the data have been interpolated while large gaps were not. Tide constituents were retrieved through harmonic analysis using 123 waves having a period ranging from long ones to eighth-diurnal ones. The reconstructed signal is used to assess the quality of both the data and the analysis and the erroneous records were examined and corrected. The effect of the hourly averaging of the raw data on the quality of the analysis is also investigated. The tide constituents having the largest amplitudes are, as expected, the semi-diurnal, diurnal, fourth-diurnal and long term constituents. The major components of semi-diurnal waves are the M2 and S2 tides. The M2 tide height ranges between 0.5 and 0.85 m. The maximum height is found at Cameroon estuary and the minimum at the Kribi station located in the South coast. The S2 constituent varies similarly as the M2 constituent. Its amplitude ranges between 0.18 and 0.52 m. The lowest S2 amplitude occurs also at Kribi station. In the Dibamba estuary the spectrum shows a larger number of significant semi-diurnal and fourth-diurnal waves than other zones. Concerning diurnal waves, the dominant one is the K1 tide and its amplitude is homogeneous along the coast. The influence of the long-term components is the strongest in the Cameroon estuary due to important fluctuations of the rivers run-off.
文摘This study was carried out under the aegis of the program Surface Water and Ocean Topography (SWOT) associated with the National Center of Space Studies (CNES). The future SWOT mission will offer new opportunities to survey the hydrodynamic in the rivers because it will provide data on the water level/ discharges with a high spatial resolution (oceans: 1 km, rivers: 100 m of width) and with a global cover. However, it is important to estimate the capacity of SWOT to reproduce the hydrodynamic phenomena in the estuaries and the temporal and the spatial variability of this dynamic. The aim of this paper is 1) to estimate the capacity of SWOT to reproduce the hydrological variability of watersheds, and 2) to validate the use of these data for other zone without hydrometric station. Based on discharge measurements and simulated Surface Water and Ocean Topography (SWOT) data, we have investigated the hydrological variability of the main French rivers (Seine, Loire, Garonne and Rh?ne) by applying a series of statistical analyses to the discharge time series. A frequency analysis has been also used using a technique of wavelet. Results have shown a similar hydrological variability of the four watersheds. Three different periods of hydrologic variability has been identified: before 1970, between 1970 and 1990, and after 1990. Using these analyses, simulated SWOT samples and discharges were compared during the three studied periods. Simulated SWOT data, obtained by a synthetic sampling of river discharges basing on the number of measurements per repeat orbit, reproduce the hydrological variability of rivers. Such reproduction seems to be independent in the number of SWOT passages (from two to four), except for the minimum and maximum annual discharges where number of overpass seems to have an influence. These results were validated by coherence wavelet which underlines coherence higher than 90% between simulated SWOT data and in-situ discharges. Nevertheless, good correlation was not observed for the minimum and the maximum annual discharge with an underestimation for SWOT maximum annual and an overestimation of the minimum annual SWOT ones. Moreover, best identification of minimum, mean and maximum annual discharge depends on SWOT overpasses.