A series of nitrogen-doped CoAlO(N-CoAlO)were constructed by a hydrothermal route combined with a controllable NH_(3) treatment strategy.The effects of NH_(3) treatment on the physico-chemical properties and oxidation...A series of nitrogen-doped CoAlO(N-CoAlO)were constructed by a hydrothermal route combined with a controllable NH_(3) treatment strategy.The effects of NH_(3) treatment on the physico-chemical properties and oxidation activities of N-Co AlO catalysts were investigated.In comparison to CoAlO,a smallest content decrease in surface Co^(3+)(serving as active sites)while a largest increased amount of surface Co^(2+)(contributing to oxygen species)are obtained over N-Co AlO/4h among the N-CoAlO catalysts.Meanwhile,a maximum N doping is found over N-CoAlO/4h.As a result,N-CoAlO/4h(under NH_(3) treatment at 400℃ for 4 hr)with rich oxygen vacancies shows optimal catalytic activity,with a T90(the temperature required to reach a 90% conversion of propane)at 266℃.The more oxygen vacancies are caused by the co-operative effects of N doping and suitable reduction of Co^(3+) for NCoAlO/4h,leading to an enhanced oxygen mobility,which in turn promotes C_(3)H_(8) total oxidation activity dominated by Langmuir-Hinshelwood mechanism.Moreover,in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTs)analysis shows that N doping facilities the decomposition of intermediate species(propylene and formate)into CO_(2)over the catalyst surface of N-CoAlO/4h more easily.Our reported design in this work will provide a promising way to develop abundant oxygen vacancies of Co-based catalysts derived from hydrotalcites by a simple NH_(3) treatment.展开更多
The solubility of ammonium tungstate in a special hydrothermal condition is exploited to synthesize uniform microspheres of Ce-Cu-W-O oxides.Compared to their W-undoped counterparts,they possess more Ce^3+ and oxygen ...The solubility of ammonium tungstate in a special hydrothermal condition is exploited to synthesize uniform microspheres of Ce-Cu-W-O oxides.Compared to their W-undoped counterparts,they possess more Ce^3+ and oxygen vacancies,thereby promoting oxygen mobility.The formed rich WO3 surface can effectively provide acid sites,which is helpful for adsorption of vinyl chloride and interrupting the C-Cl bond.In addition,the presence of WO3 induces the formation of finer CuO nanoparticles with respect to the traditional coprecipitation method,thereby resulting in a better reducibility.Benefiting from both the enhanced acidity and reducibility,the Ce-Cu-W-O microspheres deliver excellent low-temperature vinyl chloride oxidation activity(a reaction rate of 2.01×10^-7 mol/(gcat·s)at 250℃)and high HCl selectivity.Moreover,subtle deactivation occurs after the three cycling activity tests,and a stable vinyl chloride conversion as well as mineralization are observed during the 72-h durability test at 300℃,which demonstrates good thermal stability.Our strategy can provide new insights into the design and synthesis of metal oxides for catalytic oxidation of chlorinated volatile organic compounds.展开更多
Summary of main observation and conclusion A series of electrospun LaCoO3 perovskites derived from CoX2 (X =CH3COO-,NO3-) were prepared and investigated for total propane oxidation.It is shown that pure rhombohedral p...Summary of main observation and conclusion A series of electrospun LaCoO3 perovskites derived from CoX2 (X =CH3COO-,NO3-) were prepared and investigated for total propane oxidation.It is shown that pure rhombohedral perovskite LaCoO3 from Co(CH3COO)2 can be obtained at a relatively low temperature,400 ℃,benefitting from the complexation effect of CH3COO-.On the other hand,CH3COO-can accelerate the complete decomposition of polymer.The low-temperature process can protect LaCoO3 nanoparticles from growing up.展开更多
基金financially supported by the National Key Research and Development Program of China(No.2019YFC1904500)Young Top Talents of Fujian Young Eagle Program。
文摘A series of nitrogen-doped CoAlO(N-CoAlO)were constructed by a hydrothermal route combined with a controllable NH_(3) treatment strategy.The effects of NH_(3) treatment on the physico-chemical properties and oxidation activities of N-Co AlO catalysts were investigated.In comparison to CoAlO,a smallest content decrease in surface Co^(3+)(serving as active sites)while a largest increased amount of surface Co^(2+)(contributing to oxygen species)are obtained over N-Co AlO/4h among the N-CoAlO catalysts.Meanwhile,a maximum N doping is found over N-CoAlO/4h.As a result,N-CoAlO/4h(under NH_(3) treatment at 400℃ for 4 hr)with rich oxygen vacancies shows optimal catalytic activity,with a T90(the temperature required to reach a 90% conversion of propane)at 266℃.The more oxygen vacancies are caused by the co-operative effects of N doping and suitable reduction of Co^(3+) for NCoAlO/4h,leading to an enhanced oxygen mobility,which in turn promotes C_(3)H_(8) total oxidation activity dominated by Langmuir-Hinshelwood mechanism.Moreover,in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTs)analysis shows that N doping facilities the decomposition of intermediate species(propylene and formate)into CO_(2)over the catalyst surface of N-CoAlO/4h more easily.Our reported design in this work will provide a promising way to develop abundant oxygen vacancies of Co-based catalysts derived from hydrotalcites by a simple NH_(3) treatment.
文摘The solubility of ammonium tungstate in a special hydrothermal condition is exploited to synthesize uniform microspheres of Ce-Cu-W-O oxides.Compared to their W-undoped counterparts,they possess more Ce^3+ and oxygen vacancies,thereby promoting oxygen mobility.The formed rich WO3 surface can effectively provide acid sites,which is helpful for adsorption of vinyl chloride and interrupting the C-Cl bond.In addition,the presence of WO3 induces the formation of finer CuO nanoparticles with respect to the traditional coprecipitation method,thereby resulting in a better reducibility.Benefiting from both the enhanced acidity and reducibility,the Ce-Cu-W-O microspheres deliver excellent low-temperature vinyl chloride oxidation activity(a reaction rate of 2.01×10^-7 mol/(gcat·s)at 250℃)and high HCl selectivity.Moreover,subtle deactivation occurs after the three cycling activity tests,and a stable vinyl chloride conversion as well as mineralization are observed during the 72-h durability test at 300℃,which demonstrates good thermal stability.Our strategy can provide new insights into the design and synthesis of metal oxides for catalytic oxidation of chlorinated volatile organic compounds.
基金the National Natural Science Foundation of China(Nos.21875037,21407025)the National Science Foundation of Fujian Province(No.2016J01047)the New Century Talent Project of Fujian Province.
文摘Summary of main observation and conclusion A series of electrospun LaCoO3 perovskites derived from CoX2 (X =CH3COO-,NO3-) were prepared and investigated for total propane oxidation.It is shown that pure rhombohedral perovskite LaCoO3 from Co(CH3COO)2 can be obtained at a relatively low temperature,400 ℃,benefitting from the complexation effect of CH3COO-.On the other hand,CH3COO-can accelerate the complete decomposition of polymer.The low-temperature process can protect LaCoO3 nanoparticles from growing up.