Climate change is generating range shifts in many organisms,notably along the elevational gradient in mountainous environments.However,moving up in elevation exposes organisms to lower oxygen availability,which may re...Climate change is generating range shifts in many organisms,notably along the elevational gradient in mountainous environments.However,moving up in elevation exposes organisms to lower oxygen availability,which may reduce the successful reproduction and development of oviparous organisms.To test this possibility in an upwardcolonizing species,we artificially incubated developing embryos of the viperine snake(Natrix maura)using a split-clutch design,in conditions of extreme high elevation(hypoxia at 2877 m above sea level;72%sea-level equivalent O2 availability)or low elevation(control group;i.e.normoxia at 436 m above sea level).Hatching success did not differ between the two treatments.Embryos developing at extreme high elevation had higher heart rates and hatched earlier,resulting in hatchlings that were smaller in body size and slower swimmers compared to their siblings incubated at lower elevation.Furthermore,post-hatching reciprocal transplant of juveniles showed that snakes which developed at extreme high elevation,when transferred back to low elevation,did not recover full performance compared to their siblings from the low elevation incubation treatment.These results suggest that incubation at extreme high elevation,including the effects of hypoxia,will not prevent oviparous ectotherms from producing viable young,but may pose significant physiological challenges on developing offspring in ovo.These early-life performance limitations imposed by extreme high elevation could have negative consequences on adult phenotypes,including on fitness-related traits.展开更多
基金the French Laboratory of Excellence project“TULIP”(ANR-10-LABX-41,ANR-11-IDEX-0002-02)INTERREG POCTEFA ECTOPYR(no.EFA031/15)+2 种基金the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 752299All experimental protocols(including animal collection,housing,experimentation,and release)were approved by the DREAL Midi-Pyrénées(Direction Régionale de l’Environnement,de l’Aménagement et du Logement)and by the Préfectures of Ariège,Aude,Haute-Garonne,Hautes-Pyrénées,and Pyrénées Orientales districts(ArrêtéPréfectoral No.2017-s-02 du 30 mars 2017)and ethical committee(APAFIS#16359-201808011445465 v4)All experiments were carried out in accordance with the approved guidelines.Animal caretakers and handlers were trained to use wildlife in scientific purposes(Decree No.2013-118 du 01 février 2013 and approval of the Ministry of Agriculture under No.I-75-MNHN-F1-15 du 17 juin 2015).
文摘Climate change is generating range shifts in many organisms,notably along the elevational gradient in mountainous environments.However,moving up in elevation exposes organisms to lower oxygen availability,which may reduce the successful reproduction and development of oviparous organisms.To test this possibility in an upwardcolonizing species,we artificially incubated developing embryos of the viperine snake(Natrix maura)using a split-clutch design,in conditions of extreme high elevation(hypoxia at 2877 m above sea level;72%sea-level equivalent O2 availability)or low elevation(control group;i.e.normoxia at 436 m above sea level).Hatching success did not differ between the two treatments.Embryos developing at extreme high elevation had higher heart rates and hatched earlier,resulting in hatchlings that were smaller in body size and slower swimmers compared to their siblings incubated at lower elevation.Furthermore,post-hatching reciprocal transplant of juveniles showed that snakes which developed at extreme high elevation,when transferred back to low elevation,did not recover full performance compared to their siblings from the low elevation incubation treatment.These results suggest that incubation at extreme high elevation,including the effects of hypoxia,will not prevent oviparous ectotherms from producing viable young,but may pose significant physiological challenges on developing offspring in ovo.These early-life performance limitations imposed by extreme high elevation could have negative consequences on adult phenotypes,including on fitness-related traits.