期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Thermoporoelastic stress perturbations from hydraulic fracturing and thermal depletion in enhanced geothermal systems(EGS)and implications for fault reactivation and seismicity
1
作者 Mengke An Rui Huang +2 位作者 Derek Elsworth Fengshou Zhang egor dontsov 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2893-2903,共11页
Hydraulic fracturing then fluid circulation in enhanced geothermal system(EGS)reservoirs have been shown to induce seismicity remote from the stimulation-potentially generated by the distal projection of thermoporoela... Hydraulic fracturing then fluid circulation in enhanced geothermal system(EGS)reservoirs have been shown to induce seismicity remote from the stimulation-potentially generated by the distal projection of thermoporoelastic stresses.We explore this phenomenon by evaluating stress perturbations resulting from stimulation of a single stage of hydraulic fracturing that is followed by thermal depletion of a prismatic zone adjacent to the hydraulic fracture.We use Coulomb failure stress to assess the effect of resulting stress perturbations on instability on adjacent critically-stressed faults.Results show that hydraulic fracturing in a single stage is capable of creating stress perturbations at distances to 1000 m that reach 10^(-5)-10^(-4)MPa.At a closer distance,the magnitude of stress perturbations increases even further.The stress perturbation induced by temperature depletion could also reach 10^(-3)-10^(-2)MPa within 1000 m-much higher than that by hydraulic fracturing.Considering that a critical change in Coulomb failure stress for fault instability is 10^(-2)MPa,a single stage of hydraulic fracturing and thermal drawdown are capable of reactivating critically-stressed faults at distances within 200 m and 1000 m,respectively.These results have important implications for understanding the distribution and magnitudes of stress perturbations driven by thermoporoelastic effects and the associated seismicity during the simulation and early production of EGS reservoirs. 展开更多
关键词 Thermoporoelastic stress perturbations Hot-dry rock Enhanced geothermal system Hydraulic fracturing Thermal depletion Fault instability
在线阅读 下载PDF
Numerical investigation on the effect of depletion-induced stress reorientation on infill well hydraulic fracture propagation 被引量:7
2
作者 Feng-Shou Zhang Liu-Ke Huang +5 位作者 Lin Yang egor dontsov Ding-Wei Weng Hong-Bo Liang Zi-Rui Yin Ji-Zhou Tang 《Petroleum Science》 SCIE CAS CSCD 2022年第1期296-308,共13页
Depletion-induced stress change causes the redistribution of stress field in reservoirs,which can lead to the reorientation of principal stresses.Stress reorientation has a direct impact on fracture propagation of inf... Depletion-induced stress change causes the redistribution of stress field in reservoirs,which can lead to the reorientation of principal stresses.Stress reorientation has a direct impact on fracture propagation of infill wells.To understand the effect of stress reorientation on the propagation of infill well’s fractures,an integrated simulation workflow that combines the reservoir flow calculation and the infill well hydraulic fracturing modeling is adopted.The reservoir simulation is computed to examine the relationship between the extent of stress reversal region and reservoir properties.Then,the hydraulic fracturing model considering the altered stress field for production is built to characterize the stress evolution of secondary fracturing.Numerical simulations show that stress reorientation may occur due to the decreasing of the horizontal stresses in an elliptical region around the parent well.Also,the initial stress difference is the driving factor for stress reorientation.However,the bottom hole pressure,permeability and other properties connected with fluid flow control timing of the stress reorientation.The decrease of the horizontal stresses around the parent well lead to asymmetrical propagation of a hydraulic fracture of the infill well.The study provides insights on understanding the influence of stress reorientation to the infill well fracturing treatment and interference between parent and infill wells. 展开更多
关键词 Infill well Depletion Hydraulic fracture Stress reorientation Asymmetry fracture
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部