Metabolic reprogramming reshapes the tumor microenvironment(TME)and facilitates metastasis,but its molecular mechanisms remain incompletely understood.Here,we identified enolase 2(ENO2),a critical glycolytic enzyme,as...Metabolic reprogramming reshapes the tumor microenvironment(TME)and facilitates metastasis,but its molecular mechanisms remain incompletely understood.Here,we identified enolase 2(ENO2),a critical glycolytic enzyme,as being associated with lymphatic metastasis in head and neck squamous cell carci-noma(HNSCC).Mechanistically,phosphoenolpyruvate(PEP),the metabolite secreted by ENO2-expressing HNSCC cells,drove histone H3 lysine 18 lactylation(H3K18la)-mediated M2 polarization in macrophages,which,in turn,enhanced the epithelial-mesenchymal transition(EMT)and invasiveness of HNSCC cells.Pharmacological inhibition of ENO2 with POMHEX effectively reversed M2 macrophage polarization and inhibited HNSCC lymphatic metastasis.Collectively,our findings underscore the prog-nostic significance of ENO2 and highlight its potential as a therapeutic target for metastatic HNSCC.Furthermore,we reveal a previously underappreciated role of PEP in modulating the tumor immune microenvironment and tumor metastasis via epigenetic modification.展开更多
The Elongator complex is conserved in a wide range of species and plays crucial roles in diverse cellular processes.We have previously shown that the Elongator protein PoElp3 was involved in the asexual development,pa...The Elongator complex is conserved in a wide range of species and plays crucial roles in diverse cellular processes.We have previously shown that the Elongator protein PoElp3 was involved in the asexual development,pathogenicity,and autophagy of the rice blast fungus.In this study,we further revealed that PoElp3 functions via tRNA-mediated protein integrity.Phenotypic analyses revealed that overexpression of two of the tRNAs,tK(UUU)and tQ(UUG)could rescue the defects inΔPoelp3 strain.TMT-based proteomic and transcriptional analyses demonstrated that 386 proteins were down-regulated inΔPoelp3 strain compared with wild type strain Guy11,in a transcription-independent manner.Codon usage assays revealed an enrichment of Glutamine CAA-biased mRNA in the 386 proteins compared with the 70-15 genome.In addition to those reported previously,we also found that PoErp9,a sphingolipid C9-methyltransferase,was down-regulated in theΔPoelp3strain.Through an ILV2-specific integration of PoERP9-GFP into the wild type andΔPoelp3 strain,we were able to show that PoErp9 was positively regulated by PoElp3 translationally but not transcriptionally.Functional analyses revealed that PoErp9 was involved in the fungal growth,conidial development,pathogenicity,and TORrelated autophagy homeostasis in Pyricularia oryzae.Taken together,our results suggested that PoElp3 acts through the tRNA-mediated translational efficiency to regulate asexual development,pathogenicity,sphingolipid metabolism,and autophagy in the rice blast fungus.展开更多
(+)-Strebloside,a significant bioactive compound isolated from the roots of Streblus asper Lour.,demonstrates inhibitory effects against multiple malignancies.However,its specific function and underlying mechanistic p...(+)-Strebloside,a significant bioactive compound isolated from the roots of Streblus asper Lour.,demonstrates inhibitory effects against multiple malignancies.However,its specific function and underlying mechanistic pathways in Non-Hodgkin lymphoma(NHL)remain unexplored.This investigation sought to elucidate the role and potential mechanisms of(+)-strebloside-induced NHL cell death.The results demonstrated that(+)-strebloside significantly induced apoptosis and ferroptosis in NHL cells,including those from Raji cell-derived xenograft models.Mechanistic analyses revealed that(+)-strebloside enhanced six-transmembrane epithelial antigen of prostate 3(STEAP3)-induced ferroptosis in NHL,and STEAP3 inhibition reduced the proliferation-inhibitory effects of(+)-strebloside.Furthermore,(+)-strebloside suppressed NHL proliferation through the mitogen-activated protein kinase(MAPK)pathway,and extracellular signal-regulated kinase(ERK)inhibition diminished the proliferation-inhibitory activity induced by(+)-strebloside.These findings indicate that(+)-strebloside presents promising therapeutic potential for NHL treatment.展开更多
Microglial pyroptosis and neuroinflammation have been implicated in the pathogenesis of sepsis-associated encephalopathy(SAE).OGT-mediated O-GlcNAcylation is involved in neurodevelopment and injury.However,its regulat...Microglial pyroptosis and neuroinflammation have been implicated in the pathogenesis of sepsis-associated encephalopathy(SAE).OGT-mediated O-GlcNAcylation is involved in neurodevelopment and injury.However,its regulatory function in microglial pyroptosis and involvement in SAE remains unclear.In this study,we demonstrated that OGT deficiency augmented microglial pyroptosis and exacerbated secondary neuronal injury.Furthermore,OGT inhibition impaired cognitive function in healthy mice and accelerated the progression in SAE mice.Mechanistically,OGT-mediated O-GlcNAcylation of ATF2 at Ser44 inhibited its phosphorylation and nuclear translocation,thereby amplifying NLRP3 inflammasome activation and promoting inflammatory cytokine production in microglia in response to LPS/Nigericin stimulation.In conclusion,this study uncovers the critical role of OGT-mediated O-GlcNAcylation in modulating microglial activity through the regulation of ATF2 and thus protects against SAE progression.展开更多
Objective Obstructive sleep apnea (OSA) is closely related to obesity, insulin resistance and inflammation. Secreted frizzled-related protein 5 (SFRP5) is a recently discovered adipokine. It is involved in insulin res...Objective Obstructive sleep apnea (OSA) is closely related to obesity, insulin resistance and inflammation. Secreted frizzled-related protein 5 (SFRP5) is a recently discovered adipokine. It is involved in insulin resistance and inflammation in obesity. This study aimed at evaluating the association between SFRP5and sleeping characteristics as well as biochemical parameters of OSA patients.Methods This was a prospective case control study. Nondiabetic OSA patients and controls were consecutively recruited and divided into three groups: OSA group, apnea–hypopnea Index (AHI)≥5/h; healthy controls with normal body mass index (BMI); obese controls without OSA, and BMI > 24.0 kg/m2. All participants underwent polysomnography (PSG). Plasma SFRP5 was examined using enzyme-linked immunosorbent assay (ELISA). Blood biochemical examinations, including fasting blood glucose (FBG), lipid profile, hypersensitive Creactive protein (hsCRP), were performed early in the morning after PSG. Patients with severe OSA were treated with nasal continuous positive airway pressure (nCPAP), and plasma SFRP5 was repeatedly measured for comparison.Results Sixty-eight subjects were enrolled in the study, including 38 patients of OSA, whose medium AHI was 58.70 /h (36.63, 71.15), 20 obese controls, and 10 healthy controls. The plasma SFRP5 level of OSA patients was not significantly different from that of healthy controls or obese controls. In OSA patients, SFRP5 level correlated positively with triglyceride level (r=0.447, P=0.005) and negatively with LDL-cholesterol level and HDLcholesterol level (r=?0.472 and P=0.003; r=?0.478 and P=0.002; respectively). SFRP5 level was not found correlating with FBG, AHI, or any of nocturnal hypoxia parameters. After overnight nCPAP treatment, plasma SFRP5 levels of OSA patients did not change significantly (t=1.557, P = 0.148) compared to that of pretreatment.Conclusions In nondiabetic OSA patients, plasma SFRP5 is associated with the lipid profile. However,no correlation was observed between SFRP5 and FBG or sleep parameters. The SFRP5 level of OSA patients did not differ from that of non-OSA individuals in our study.展开更多
Porphyromonas gingivalis(P.gingivalis),a key pathogen in periodontitis,has been shown to accelerate the progression of atherosclerosis(AS).However,the definite mechanisms remain elusive.Emerging evidence supports an a...Porphyromonas gingivalis(P.gingivalis),a key pathogen in periodontitis,has been shown to accelerate the progression of atherosclerosis(AS).However,the definite mechanisms remain elusive.Emerging evidence supports an association between mitochondrial dysfunction and AS.In our study,the impact of P.gingivalis on mitochondrial dysfunction and the potential mechanism were investigated.The mitochondrial morphology of EA.hy926 cells infected with P.gingivalis was assessed by transmission electron microscopy,mitochondrial staining,and quantitative analysis of the mitochondrial network.Fluorescence staining and flow cytometry analysis were performed to determine mitochondrial reactive oxygen species(mtROS)and mitochondrial membrane potential(MMP)levels.Cellular ATP production was examined by a luminescence assay kit.The expression of key fusion and fission proteins was evaluated by western blot and immunofluorescence.Mdivi-1,a specific Drp1 inhibitor,was used to elucidate the role of Drp1 in mitochondrial dysfunction.Our findings showed that P.gingivalis infection induced mitochondrial fragmentation,increased the mtROS levels,and decreased the MMP and ATP concentration in vascular endothelial cells.We observed upregulation of Drp1(Ser616)phosphorylation and translocation of Drp1 to mitochondria.Mdivi-1 blocked the mitochondrial fragmentation and dysfunction induced by P.gingivalis.Collectively,these results revealed that P.gingivalis infection promoted mitochondrial fragmentation and dysfunction,which was dependent on Drp1.Mitochondrial dysfunction may represent the mechanism by which P.gingivalis exacerbates atherosclerotic lesions.展开更多
The influence of a deep excavation on existing shield tunnels nearby is a vital issue in tunnelling engineering.Whereas,there lacks robust methods to predict excavation-induced tunnel displacements.In this study,an au...The influence of a deep excavation on existing shield tunnels nearby is a vital issue in tunnelling engineering.Whereas,there lacks robust methods to predict excavation-induced tunnel displacements.In this study,an auto machine learning(AutoML)-based approach is proposed to precisely solve the issue.Seven input parameters are considered in the database covering two physical aspects,namely soil property,and spatial characteristics of the deep excavation.The 10-fold cross-validation method is employed to overcome the scarcity of data,and promote model’s robustness.Six genetic algorithm(GA)-ML models are established as well for comparison.The results indicated that the proposed AutoML model is a comprehensive model that integrates efficiency and robustness.Importance analysis reveals that the ratio of the average shear strength to the vertical effective stress E_(ur)/σ′_(v),the excavation depth H,and the excavation width B are the most influential variables for the displacements.Finally,the AutoML model is further validated by practical engineering.The prediction results are in a good agreement with monitoring data,signifying that our model can be applied in real projects.展开更多
Glycine functionalized activated carbon adsorption material(NOPAC-GLY-X)was successfully prepared by one-step thermal decomposition using agricultural waste navel orange peel as a precursor.Through batch adsorption ex...Glycine functionalized activated carbon adsorption material(NOPAC-GLY-X)was successfully prepared by one-step thermal decomposition using agricultural waste navel orange peel as a precursor.Through batch adsorption experiments,it is found that the adsorption performance of Gd(Ⅲ)on activated carbon can be significantly enhanced by glycine modification.The adsorption isotherms of the NOPACs conform to the Langmuir isotherm model,and the maximum adsorption capacity of the activated carbon sample NOPAC-Gly-60 is approximately 48.5 mg/g.The Gd(Ⅲ)adsorption capacity of navel orange peel activated carbon can be doubled after glycine modification,and the adsorption efficiency of gadolinium can reach99%at pH=7.The physicochemical properties of the prepared adsorbents were characterized by Brunauer-Emmett-Teller(BET),Fourier transform infrared spectroscopy(FTIR),elemental analysis(EA),and X-ray photoelectron spectroscopy(XPS).The characterization test shows that the specific surface area of the sample increases from 1121 to 1523 m^(2)/g,and the ratio of(N+O)/C increases from 10.8%to 30.0%by the glycine modification.After five cycles of adsorption-desorption,the adsorption capacity can still be maintained at 88%of the initial capacity.NOPAC-GLY-60 has excellent adsorption selectivity for Gd(Ⅲ).With the obvious advantages of simple synthesis steps and low cost,the activated carbon modification method adopted in this study has great application value in the field of rare earth adsorption and recovery.展开更多
Objective: To observe the effects of fuzhengbutu(strengthening antipathogenic qi and tonifying the earth)acupuncture-moxibustion therapy on walking function in the patients with post-stroke hemiplegia.Methods: A total...Objective: To observe the effects of fuzhengbutu(strengthening antipathogenic qi and tonifying the earth)acupuncture-moxibustion therapy on walking function in the patients with post-stroke hemiplegia.Methods: A total of 57 patients with hemiplegia after ischemic stroke treated in our hospital from January2018 through to October 2018 were collected as the study objects. According to random number table,they were divided into a treatment group(29 cases) and a control group(28 cases). In the treatment group, the fuzhengbutu acupuncture-moxibustion therapy combined with rehabilitation treatment was adopted. In the control group, the rehabilitation treatment was given. The persistent walking time and pause time in PIERENSTEP gait measurable training and test system as well as the score of Berg balance scale(BBS) were compared between the two groups.Results: In the treatment group, the persistent walking time after treatment 1.47 ±0.28) s was shorter obviously versus before treatment(2.12 ± 0.38)s, indicating the significant difference(P<0.05). The pause time after treatment was not different obviously versus before treatment(P> 0.05). In the control group,the persistent walking time after treatment(1.88 ± 0.22) s was shorter obviously versus before treatment(2.18 ± 0.30)s, indicating the significant difference(P<0.05). The pause time after treatment was not different obviously versus before treatment(P> 0.05). Before treatment, the differences were not significant in the persistent walking time and pause duration in the patients of either group(P>0.05). After treatment, the persistent walking time in the treatment group was shorter obviously than the control group(P<0.05) and the difference in pause time was not significant between the two groups(P>0.05). Before treatment, there was no difference in BBS score between the two groups(P>0.05). In the treatment group, BBS score(42.79 ±2.78) after treatment was higher than(35.86 ±2.64) before treatment, indicating the significant difference(P<0.05). In the control group, BBS score(39.07 ±2.67) after treatment was higher than(35.86 ±2.64) before treatment, indicating the significant difference(P<0.05). In comparison of BBS score after treatment between the two groups, the score in the treatment group was higher than the control group, indicating the significant difference(P<0.05).Conclusion: Based on rehabilitation treatment, Fuzhengbutu acupuncture-moxibustion therapy effectively improves the walking function of the patients with hemiplegia after ischemic stroke.展开更多
Background:The Yangtze River floodplain provides important wintering habitats for Hooded Cranes(Grus monacha) in China.Fluctuations in the water level change foraging habitat and food availability,affecting their temp...Background:The Yangtze River floodplain provides important wintering habitats for Hooded Cranes(Grus monacha) in China.Fluctuations in the water level change foraging habitat and food availability,affecting their temporal-spatial patterns of foraging activities.It is of considerable importance to investigate the effect of these fluctuations on food availability for wintering Hooded Cranes and their foraging response to these changes.Understanding their behavior patterns is beneficial in protecting the wintering crane population and restoring their wintering habitats.Methods:A field survey of the winter behavior of cranes was carried out at Shengjin Lake from November in 2013 to April in 2014.Habitat variables,as well as the spatial distribution and behavior patterns of wintering cranes at their foraging sites during five stages of water level fluctuation were collected.Based on this data we analyzed the relationship of foraging behavior relative to water level fluctuations and habitat types.Results:The foraging habitats used by Hooded Cranes varied at the different water level stages.As the water level decreased,the use of meadows and mudflats increased.When the water dropped to its lowest level,the use by the Hooded Crane in the mudflats reached a peak.There were statistically significant differences in time budget in the three types of habitats over the five stages of the water level.In the mudflats,the foraging behavior and maintenance behavior varied significantly with the water level,while the alert behavior showed little variation.Analysis of a generalized linear model showed that the five water level stages and three habitat types had a significant effect on foraging behavior,while the combined effect of these two variables was significant on the foraging time budget and the length of foraging activity of the Hooded Crane.Conclusions:With the decrease in the water level,the use of mudflats by Hooded Cranes increased correspondingly.Food availability in different habitats was affected by changes in the water level.The Hooded Crane adjusted its foraging patterns and made full use of the three available types of habitat in order to acquire enough food in response to fluctuations in the water level.展开更多
In this study, we aim to investigate a unified modeling method for the monotonic and cyclic behaviors of sand and clay. A simple double-yield-surface model, with plastic hardening modulus and dilatancy relation being ...In this study, we aim to investigate a unified modeling method for the monotonic and cyclic behaviors of sand and clay. A simple double-yield-surface model, with plastic hardening modulus and dilatancy relation being dependent on density state unlike in existing approaches, is developed by considering the location of the critical state line. The model is used to simulate the drained and undrained tests of various sands and clays under monotonic and cyclic loadings. Prediction results are compared with experimental results, which show that the proposed approach is capable of modeling the monotonic and cyclic behaviors of sand and clay.展开更多
CD93 and GAIP-interacting protein, C termius (GIPC) have been shown to interactively alter phagocytic processes of immune cells. CD93 and GIPC expression and localization during cen-tral nervous system inflammation ...CD93 and GAIP-interacting protein, C termius (GIPC) have been shown to interactively alter phagocytic processes of immune cells. CD93 and GIPC expression and localization during cen-tral nervous system inflammation have not yet been reported. In this study, we established a rat model of brain inlfammation by lipopolysaccharide injection to the lateral ventricle. In the brain of rats with inlfammation, western blots showed increased CD93 expression that decreased over time. GIPC expression was unaltered. Immunohistochemistry demonstrated extensive distribution of CD93 expression mainly in cell membranes in the cerebral cortex. After lipopoly-saccharide stimulation, CD93 expression increased and then reduced, with distinct staining in the cytoplasm and nucleus. Double immunolfuorescence staining in cerebral cortex of normal rats showed that CD93 and GIPC widely expressed in resting microglia and neurons. CD93 was mainly expressed in microglial and neuronal cell membranes, while GIPC was expressed in both cell membrane and cytoplasm. In the cerebral cortex at 9 hours after model establishment, CD93-immunoreactive signal diminished in microglial membrane, with cytoplasmic transloca-tion and aggregation detected. GIPC localization was unaltered in neurons and microglia. These results are the ifrst to demonstrate CD93 participation in pathophysiological processes of central nervous system inlfammation.展开更多
The interaction between a cationic dye Methylene Blue(MB)and an anionic surfactant sodium dodecyl sulfate(SDS)with the presence of Cd2+was investigated spectrophotometrically in a certain concentration range.The spect...The interaction between a cationic dye Methylene Blue(MB)and an anionic surfactant sodium dodecyl sulfate(SDS)with the presence of Cd2+was investigated spectrophotometrically in a certain concentration range.The spectrophotometric measurements of dye-metal ion-surfactant system were carried out.The results indicated that the SDS concentration had a significant influence on the dye spectrum,while the addition of Cd2~hardly caused change of the maximum value of absorbance.According to this observation,we concluded that electrostatic and hydrophobic interaction between dye and surfactant occurred up to a certain level,and the homo-ions Cd2+almost exerted no effect on the dye-surfactant complexation,establishing a theoretical foundation for simultaneous removal of organic dye and heavy metal using foam fractionation.Meanwhile,the effects of their interaction on foam performance were investigated.The results showed that the addition of Cd2+favored the tendency to ameliorate foam properties just contrary to MB.The feasibility of foam separation for dye and heavy metal removal from simulated wastewater was also confirmed using a continuous foam fractionator.In the simultaneous removal process,with the initial SDS concentration ranging from 0.5 to 5.0 retool/L,the maximum removal efticiencies of MB and Cd2+were obtained as 99.69%and 99.61%,respectively.The enrichment ratios were reduced from 24.34 to 7.65 for MB and from 22.01 to 3.35 for Cd2+.展开更多
This study investigated the effects of Yishendaluo decoction on the loss of blood-brain barrier integrity in mice exhibiting experimental autoimmune encephalomyelitis.To this end,we used real-time fluorescent quantita...This study investigated the effects of Yishendaluo decoction on the loss of blood-brain barrier integrity in mice exhibiting experimental autoimmune encephalomyelitis.To this end,we used real-time fluorescent quantitative PCR to measure the levels of mRNAs specific to the T cell markers CD4 and CD8,and the monocyte marker CD11b.In addition,we used Evans blue dye extravasation in the spinal cord and brain tissues to assess blood-brain barrier permeability.The results indicated that an increase in blood-brain barrier permeability was associated with an increase in CD4,CD8 and CD11b mRNA expression in experimental autoimmune encephalomyelitis mice.Yishendaluo decoction administration significantly reversed inflammatory cell accumulation in cerebral tissues of experimental autoimmune encephalomyelitis mice.展开更多
Zinc binding group(ZBG)is the crucial moiety in the chemical structure of any HDAC inhibitor.In the present study,a series of sulphur-containing ZBG were designed and synthesized in the novel HDAC inhibitors to replac...Zinc binding group(ZBG)is the crucial moiety in the chemical structure of any HDAC inhibitor.In the present study,a series of sulphur-containing ZBG were designed and synthesized in the novel HDAC inhibitors to replace the classical ZBGs of SAHA and BML-210,hydroxamic acids and benzamides,respectively.The HDAC inhibitory activity and the structure-activity relationships of these molecules were analyzed.A sulphur-rich group,diethylcarbamo(dithioperoxo)thioate,was finally identified as a novel potent ZBG.Among all the synthesized compounds,4 d was much more potent compared with BML-210,and it showed similar inhibitory effect of SAHA against HDAC isoforms 1 and 2.Therefore,it was chosen as a lead compound.展开更多
Highly active cathode catalysts for efficient formation/decomposition of Li_(2)O_(2)are essential for the performance improvement of lithium-oxygen batteries(LOBs).In this study,a grain-refining Co_(0.85)Se catalyst w...Highly active cathode catalysts for efficient formation/decomposition of Li_(2)O_(2)are essential for the performance improvement of lithium-oxygen batteries(LOBs).In this study,a grain-refining Co_(0.85)Se catalyst with a lattice spacing of 2.69 A of(101)plane closely matching with the(100)plane(2.72A)of Li_(2)O_(2)was applied for high-performance LOBs.Highly(101)plane exposed Co_(0.85)Se@CNT was synthesized by a simple one-pot hydrothermal method.The Co_(0.85)Se with the lattice matching effect not only led to the efficient conversion and polarized growth of Li_(2)O_(2),but also prevented the formation of byproducts.Density functional theory(DFT)calculations reveal that Co_(0.85)Se(101)plane has the intrinsic catalytic ability to generate/decompose Li_(2)O_(2)during ORR/OER process,due to its homogeneous electron distribution,suitable adsorption energy,and promoted Li_(2)O_(2)growth kinetics.As a consequence,the(101)plane highly exposed Co_(0.85)Se@CNT-80 electrode exhibited remarkable cycle stability over 2400 h at 100 mA/g and 290cycles at 500 mA/g,which is about 2 times longer than other electrodes.展开更多
Polyethylene oxide(PEO)-based electrolytes are considered as one of the most promising solid-state electrolytes for next-generation lithium batteries with high safety and energy density;however,the drawbacks such as i...Polyethylene oxide(PEO)-based electrolytes are considered as one of the most promising solid-state electrolytes for next-generation lithium batteries with high safety and energy density;however,the drawbacks such as insufficient ion conductance,mechanical strength and electrochemical stability hinder their applications in metallic lithium batteries.To enhance their overall properties,flexible and thin composite polymer electrolyte(CPE)membranes with 3D continuous aramid nanofiber(ANF)–Li_(1.4)Al_(0.4)Ti_(1.6)(PO_(4))_(3)(LATP)nanoparticle hybrid frameworks are facilely prepared by filling PEO–Li TFSI in the 3D nanohybrid scaffolds via a solution infusion way.The construction of the 3D continuous nanohybrid networks can effectively inhibit the PEO crystallization,facilitate the lithium salt dissociation and meanwhile increase the fast-ion transport in the continuous LATP electrolyte phase,and thus greatly improving the ionic conductivity(~3 times that of the pristine one).With the integration of the 3D continuity and flexibility of the 3D ANF networks and the thermostability of the LATP phase,the CPE membranes also show a wider electrochemical window(~5.0 V vs.4.3 V),higher tensile strength(~4–10times that of the pristine one)and thermostability,and better lithium dendrite resistance capability.Furthermore,the CPE-based Li FePO_(4)/Li cells exhibit superior cycling stability(133 m Ah/g after 100 cycles at 0.3 C)and rate performance(100 m Ah/g at 1 C)than the pristine electrolyte-based cell(79 and 29m Ah/g,respectively).This work offers an important CPE design criteria to achieve comprehensivelyupgraded solid-state electrolytes for safe and high-energy metal battery applications.展开更多
基金supported by grants from the National Natural Science Foundation of China(82204428,U24A20815,82304526,82204427,82201001,82430108,82293681(82293680),82273941)the National High-level Personnelof Special Support Program(to Dongmei Zhang and Minfeng Chen)+5 种基金the Natural Science Foundation of Guangdong Province(2023A1515010361 and 2022A1515011813)the Guangdong Basic and Applied Basic Research Foundation(2024B1515020098)the Science and Technology Program of Guangzhou(SL2024A04J00410,SL2024A04J00374,SL2024A04J00280)the Fundamental Research Funds for The Central Universities(21624103)the Science and Technology Projects in Guangzhou(2023A03J1030,202201010173,202102070001)the Clinical Frontier Technology Program of the First Affiliated Hospital of Jinan University,China(JNU1AF-CFTP-2022-a01210).
文摘Metabolic reprogramming reshapes the tumor microenvironment(TME)and facilitates metastasis,but its molecular mechanisms remain incompletely understood.Here,we identified enolase 2(ENO2),a critical glycolytic enzyme,as being associated with lymphatic metastasis in head and neck squamous cell carci-noma(HNSCC).Mechanistically,phosphoenolpyruvate(PEP),the metabolite secreted by ENO2-expressing HNSCC cells,drove histone H3 lysine 18 lactylation(H3K18la)-mediated M2 polarization in macrophages,which,in turn,enhanced the epithelial-mesenchymal transition(EMT)and invasiveness of HNSCC cells.Pharmacological inhibition of ENO2 with POMHEX effectively reversed M2 macrophage polarization and inhibited HNSCC lymphatic metastasis.Collectively,our findings underscore the prog-nostic significance of ENO2 and highlight its potential as a therapeutic target for metastatic HNSCC.Furthermore,we reveal a previously underappreciated role of PEP in modulating the tumor immune microenvironment and tumor metastasis via epigenetic modification.
基金supported by National Natural Science Foundation of China(32172365 and 32272513)the Central Guidance on Local Science and Technology Development Fund of Fujian Province,China(2022L3088)the Innovative Research Funding of Fujian Agriculture and Forestry University,China(CXZX2020153D)。
文摘The Elongator complex is conserved in a wide range of species and plays crucial roles in diverse cellular processes.We have previously shown that the Elongator protein PoElp3 was involved in the asexual development,pathogenicity,and autophagy of the rice blast fungus.In this study,we further revealed that PoElp3 functions via tRNA-mediated protein integrity.Phenotypic analyses revealed that overexpression of two of the tRNAs,tK(UUU)and tQ(UUG)could rescue the defects inΔPoelp3 strain.TMT-based proteomic and transcriptional analyses demonstrated that 386 proteins were down-regulated inΔPoelp3 strain compared with wild type strain Guy11,in a transcription-independent manner.Codon usage assays revealed an enrichment of Glutamine CAA-biased mRNA in the 386 proteins compared with the 70-15 genome.In addition to those reported previously,we also found that PoErp9,a sphingolipid C9-methyltransferase,was down-regulated in theΔPoelp3strain.Through an ILV2-specific integration of PoERP9-GFP into the wild type andΔPoelp3 strain,we were able to show that PoErp9 was positively regulated by PoElp3 translationally but not transcriptionally.Functional analyses revealed that PoErp9 was involved in the fungal growth,conidial development,pathogenicity,and TORrelated autophagy homeostasis in Pyricularia oryzae.Taken together,our results suggested that PoElp3 acts through the tRNA-mediated translational efficiency to regulate asexual development,pathogenicity,sphingolipid metabolism,and autophagy in the rice blast fungus.
基金supported by the"Double First-Class"University Project(No.CPU2018GY34).
文摘(+)-Strebloside,a significant bioactive compound isolated from the roots of Streblus asper Lour.,demonstrates inhibitory effects against multiple malignancies.However,its specific function and underlying mechanistic pathways in Non-Hodgkin lymphoma(NHL)remain unexplored.This investigation sought to elucidate the role and potential mechanisms of(+)-strebloside-induced NHL cell death.The results demonstrated that(+)-strebloside significantly induced apoptosis and ferroptosis in NHL cells,including those from Raji cell-derived xenograft models.Mechanistic analyses revealed that(+)-strebloside enhanced six-transmembrane epithelial antigen of prostate 3(STEAP3)-induced ferroptosis in NHL,and STEAP3 inhibition reduced the proliferation-inhibitory effects of(+)-strebloside.Furthermore,(+)-strebloside suppressed NHL proliferation through the mitogen-activated protein kinase(MAPK)pathway,and extracellular signal-regulated kinase(ERK)inhibition diminished the proliferation-inhibitory activity induced by(+)-strebloside.These findings indicate that(+)-strebloside presents promising therapeutic potential for NHL treatment.
基金supported by the Jiangsu Provincial Medical Key Discipline(Laboratory)Cultivation Unit(JSDW202249)the Natural Science Foundation of Jiangsu Province(BK20211108)+4 种基金a Scientific Research Project of the Health Commission of Nantong(MS2023035)Nantong Natural Science Foundation(JC2023114)the Scientific Research Innovation Team of Kangda College of Nanjing Medical University(KD2022KYCXTD005)Nantong University Clinical Medicine Special Project(2022JY005)the Postgraduate Research&Practice Innovation Program of Jiangsu province(KYCX23_3416).
文摘Microglial pyroptosis and neuroinflammation have been implicated in the pathogenesis of sepsis-associated encephalopathy(SAE).OGT-mediated O-GlcNAcylation is involved in neurodevelopment and injury.However,its regulatory function in microglial pyroptosis and involvement in SAE remains unclear.In this study,we demonstrated that OGT deficiency augmented microglial pyroptosis and exacerbated secondary neuronal injury.Furthermore,OGT inhibition impaired cognitive function in healthy mice and accelerated the progression in SAE mice.Mechanistically,OGT-mediated O-GlcNAcylation of ATF2 at Ser44 inhibited its phosphorylation and nuclear translocation,thereby amplifying NLRP3 inflammasome activation and promoting inflammatory cytokine production in microglia in response to LPS/Nigericin stimulation.In conclusion,this study uncovers the critical role of OGT-mediated O-GlcNAcylation in modulating microglial activity through the regulation of ATF2 and thus protects against SAE progression.
文摘Objective Obstructive sleep apnea (OSA) is closely related to obesity, insulin resistance and inflammation. Secreted frizzled-related protein 5 (SFRP5) is a recently discovered adipokine. It is involved in insulin resistance and inflammation in obesity. This study aimed at evaluating the association between SFRP5and sleeping characteristics as well as biochemical parameters of OSA patients.Methods This was a prospective case control study. Nondiabetic OSA patients and controls were consecutively recruited and divided into three groups: OSA group, apnea–hypopnea Index (AHI)≥5/h; healthy controls with normal body mass index (BMI); obese controls without OSA, and BMI > 24.0 kg/m2. All participants underwent polysomnography (PSG). Plasma SFRP5 was examined using enzyme-linked immunosorbent assay (ELISA). Blood biochemical examinations, including fasting blood glucose (FBG), lipid profile, hypersensitive Creactive protein (hsCRP), were performed early in the morning after PSG. Patients with severe OSA were treated with nasal continuous positive airway pressure (nCPAP), and plasma SFRP5 was repeatedly measured for comparison.Results Sixty-eight subjects were enrolled in the study, including 38 patients of OSA, whose medium AHI was 58.70 /h (36.63, 71.15), 20 obese controls, and 10 healthy controls. The plasma SFRP5 level of OSA patients was not significantly different from that of healthy controls or obese controls. In OSA patients, SFRP5 level correlated positively with triglyceride level (r=0.447, P=0.005) and negatively with LDL-cholesterol level and HDLcholesterol level (r=?0.472 and P=0.003; r=?0.478 and P=0.002; respectively). SFRP5 level was not found correlating with FBG, AHI, or any of nocturnal hypoxia parameters. After overnight nCPAP treatment, plasma SFRP5 levels of OSA patients did not change significantly (t=1.557, P = 0.148) compared to that of pretreatment.Conclusions In nondiabetic OSA patients, plasma SFRP5 is associated with the lipid profile. However,no correlation was observed between SFRP5 and FBG or sleep parameters. The SFRP5 level of OSA patients did not differ from that of non-OSA individuals in our study.
基金supported by grants from National Natural Science Foundation of China(NO.81970943,81870771)。
文摘Porphyromonas gingivalis(P.gingivalis),a key pathogen in periodontitis,has been shown to accelerate the progression of atherosclerosis(AS).However,the definite mechanisms remain elusive.Emerging evidence supports an association between mitochondrial dysfunction and AS.In our study,the impact of P.gingivalis on mitochondrial dysfunction and the potential mechanism were investigated.The mitochondrial morphology of EA.hy926 cells infected with P.gingivalis was assessed by transmission electron microscopy,mitochondrial staining,and quantitative analysis of the mitochondrial network.Fluorescence staining and flow cytometry analysis were performed to determine mitochondrial reactive oxygen species(mtROS)and mitochondrial membrane potential(MMP)levels.Cellular ATP production was examined by a luminescence assay kit.The expression of key fusion and fission proteins was evaluated by western blot and immunofluorescence.Mdivi-1,a specific Drp1 inhibitor,was used to elucidate the role of Drp1 in mitochondrial dysfunction.Our findings showed that P.gingivalis infection induced mitochondrial fragmentation,increased the mtROS levels,and decreased the MMP and ATP concentration in vascular endothelial cells.We observed upregulation of Drp1(Ser616)phosphorylation and translocation of Drp1 to mitochondria.Mdivi-1 blocked the mitochondrial fragmentation and dysfunction induced by P.gingivalis.Collectively,these results revealed that P.gingivalis infection promoted mitochondrial fragmentation and dysfunction,which was dependent on Drp1.Mitochondrial dysfunction may represent the mechanism by which P.gingivalis exacerbates atherosclerotic lesions.
基金supported by the National Natural Science Foundation of China(Grant Nos.51978517,52090082,and 52108381)Innovation Program of Shanghai Municipal Education Commission(Grant No.2019-01-07-00-07-456 E00051)Shanghai Science and Technology Committee Program(Grant Nos.21DZ1200601 and 20DZ1201404).
文摘The influence of a deep excavation on existing shield tunnels nearby is a vital issue in tunnelling engineering.Whereas,there lacks robust methods to predict excavation-induced tunnel displacements.In this study,an auto machine learning(AutoML)-based approach is proposed to precisely solve the issue.Seven input parameters are considered in the database covering two physical aspects,namely soil property,and spatial characteristics of the deep excavation.The 10-fold cross-validation method is employed to overcome the scarcity of data,and promote model’s robustness.Six genetic algorithm(GA)-ML models are established as well for comparison.The results indicated that the proposed AutoML model is a comprehensive model that integrates efficiency and robustness.Importance analysis reveals that the ratio of the average shear strength to the vertical effective stress E_(ur)/σ′_(v),the excavation depth H,and the excavation width B are the most influential variables for the displacements.Finally,the AutoML model is further validated by practical engineering.The prediction results are in a good agreement with monitoring data,signifying that our model can be applied in real projects.
基金Project supported by the National Natural Science Foundation of China(41662004)。
文摘Glycine functionalized activated carbon adsorption material(NOPAC-GLY-X)was successfully prepared by one-step thermal decomposition using agricultural waste navel orange peel as a precursor.Through batch adsorption experiments,it is found that the adsorption performance of Gd(Ⅲ)on activated carbon can be significantly enhanced by glycine modification.The adsorption isotherms of the NOPACs conform to the Langmuir isotherm model,and the maximum adsorption capacity of the activated carbon sample NOPAC-Gly-60 is approximately 48.5 mg/g.The Gd(Ⅲ)adsorption capacity of navel orange peel activated carbon can be doubled after glycine modification,and the adsorption efficiency of gadolinium can reach99%at pH=7.The physicochemical properties of the prepared adsorbents were characterized by Brunauer-Emmett-Teller(BET),Fourier transform infrared spectroscopy(FTIR),elemental analysis(EA),and X-ray photoelectron spectroscopy(XPS).The characterization test shows that the specific surface area of the sample increases from 1121 to 1523 m^(2)/g,and the ratio of(N+O)/C increases from 10.8%to 30.0%by the glycine modification.After five cycles of adsorption-desorption,the adsorption capacity can still be maintained at 88%of the initial capacity.NOPAC-GLY-60 has excellent adsorption selectivity for Gd(Ⅲ).With the obvious advantages of simple synthesis steps and low cost,the activated carbon modification method adopted in this study has great application value in the field of rare earth adsorption and recovery.
基金Supported by Rural and Urban Community Project for Promoting Appropriate Techniques of Fujian Health and Family Planning Administration:2018006
文摘Objective: To observe the effects of fuzhengbutu(strengthening antipathogenic qi and tonifying the earth)acupuncture-moxibustion therapy on walking function in the patients with post-stroke hemiplegia.Methods: A total of 57 patients with hemiplegia after ischemic stroke treated in our hospital from January2018 through to October 2018 were collected as the study objects. According to random number table,they were divided into a treatment group(29 cases) and a control group(28 cases). In the treatment group, the fuzhengbutu acupuncture-moxibustion therapy combined with rehabilitation treatment was adopted. In the control group, the rehabilitation treatment was given. The persistent walking time and pause time in PIERENSTEP gait measurable training and test system as well as the score of Berg balance scale(BBS) were compared between the two groups.Results: In the treatment group, the persistent walking time after treatment 1.47 ±0.28) s was shorter obviously versus before treatment(2.12 ± 0.38)s, indicating the significant difference(P<0.05). The pause time after treatment was not different obviously versus before treatment(P> 0.05). In the control group,the persistent walking time after treatment(1.88 ± 0.22) s was shorter obviously versus before treatment(2.18 ± 0.30)s, indicating the significant difference(P<0.05). The pause time after treatment was not different obviously versus before treatment(P> 0.05). Before treatment, the differences were not significant in the persistent walking time and pause duration in the patients of either group(P>0.05). After treatment, the persistent walking time in the treatment group was shorter obviously than the control group(P<0.05) and the difference in pause time was not significant between the two groups(P>0.05). Before treatment, there was no difference in BBS score between the two groups(P>0.05). In the treatment group, BBS score(42.79 ±2.78) after treatment was higher than(35.86 ±2.64) before treatment, indicating the significant difference(P<0.05). In the control group, BBS score(39.07 ±2.67) after treatment was higher than(35.86 ±2.64) before treatment, indicating the significant difference(P<0.05). In comparison of BBS score after treatment between the two groups, the score in the treatment group was higher than the control group, indicating the significant difference(P<0.05).Conclusion: Based on rehabilitation treatment, Fuzhengbutu acupuncture-moxibustion therapy effectively improves the walking function of the patients with hemiplegia after ischemic stroke.
基金supported by the National Natural Science Foundation of China(Grant no.31172117,31472020)the Graduate Student Innovation Research Projects of Anhui University(YQH100269)
文摘Background:The Yangtze River floodplain provides important wintering habitats for Hooded Cranes(Grus monacha) in China.Fluctuations in the water level change foraging habitat and food availability,affecting their temporal-spatial patterns of foraging activities.It is of considerable importance to investigate the effect of these fluctuations on food availability for wintering Hooded Cranes and their foraging response to these changes.Understanding their behavior patterns is beneficial in protecting the wintering crane population and restoring their wintering habitats.Methods:A field survey of the winter behavior of cranes was carried out at Shengjin Lake from November in 2013 to April in 2014.Habitat variables,as well as the spatial distribution and behavior patterns of wintering cranes at their foraging sites during five stages of water level fluctuation were collected.Based on this data we analyzed the relationship of foraging behavior relative to water level fluctuations and habitat types.Results:The foraging habitats used by Hooded Cranes varied at the different water level stages.As the water level decreased,the use of meadows and mudflats increased.When the water dropped to its lowest level,the use by the Hooded Crane in the mudflats reached a peak.There were statistically significant differences in time budget in the three types of habitats over the five stages of the water level.In the mudflats,the foraging behavior and maintenance behavior varied significantly with the water level,while the alert behavior showed little variation.Analysis of a generalized linear model showed that the five water level stages and three habitat types had a significant effect on foraging behavior,while the combined effect of these two variables was significant on the foraging time budget and the length of foraging activity of the Hooded Crane.Conclusions:With the decrease in the water level,the use of mudflats by Hooded Cranes increased correspondingly.Food availability in different habitats was affected by changes in the water level.The Hooded Crane adjusted its foraging patterns and made full use of the three available types of habitat in order to acquire enough food in response to fluctuations in the water level.
基金supported by the National Natural Science Foundation of China(No.41372285)the Research Fund for the Doctoral Program of Higher Education of China(No.20110073120012)+1 种基金Shanghai Pujiang Talent Plan(No.11PJ1405700)the European Community through the program‘People’as part of the Industry-Academia Pathways and Partnerships project CREEP(PIAPP-GA-2011-286397)
文摘In this study, we aim to investigate a unified modeling method for the monotonic and cyclic behaviors of sand and clay. A simple double-yield-surface model, with plastic hardening modulus and dilatancy relation being dependent on density state unlike in existing approaches, is developed by considering the location of the critical state line. The model is used to simulate the drained and undrained tests of various sands and clays under monotonic and cyclic loadings. Prediction results are compared with experimental results, which show that the proposed approach is capable of modeling the monotonic and cyclic behaviors of sand and clay.
基金supported by the National Natural Science Foundation of China,No.31170766the Nantong Municipal Social Undertakings Technological Innovation and Demonstration Project Foundation,No.HS2012032the Natural Science Pre-research Project Foundation of Nantong University in 2012,No.12ZY020
文摘CD93 and GAIP-interacting protein, C termius (GIPC) have been shown to interactively alter phagocytic processes of immune cells. CD93 and GIPC expression and localization during cen-tral nervous system inflammation have not yet been reported. In this study, we established a rat model of brain inlfammation by lipopolysaccharide injection to the lateral ventricle. In the brain of rats with inlfammation, western blots showed increased CD93 expression that decreased over time. GIPC expression was unaltered. Immunohistochemistry demonstrated extensive distribution of CD93 expression mainly in cell membranes in the cerebral cortex. After lipopoly-saccharide stimulation, CD93 expression increased and then reduced, with distinct staining in the cytoplasm and nucleus. Double immunolfuorescence staining in cerebral cortex of normal rats showed that CD93 and GIPC widely expressed in resting microglia and neurons. CD93 was mainly expressed in microglial and neuronal cell membranes, while GIPC was expressed in both cell membrane and cytoplasm. In the cerebral cortex at 9 hours after model establishment, CD93-immunoreactive signal diminished in microglial membrane, with cytoplasmic transloca-tion and aggregation detected. GIPC localization was unaltered in neurons and microglia. These results are the ifrst to demonstrate CD93 participation in pathophysiological processes of central nervous system inlfammation.
基金supported by the National Natural Science Foundation of China (No. 50608028,50808073,50978088,51008121,51039001)the New Century Excellent Talents in University from the Ministry of Education of China (No. NCET-08-0180,NCET-08-0181)
文摘The interaction between a cationic dye Methylene Blue(MB)and an anionic surfactant sodium dodecyl sulfate(SDS)with the presence of Cd2+was investigated spectrophotometrically in a certain concentration range.The spectrophotometric measurements of dye-metal ion-surfactant system were carried out.The results indicated that the SDS concentration had a significant influence on the dye spectrum,while the addition of Cd2~hardly caused change of the maximum value of absorbance.According to this observation,we concluded that electrostatic and hydrophobic interaction between dye and surfactant occurred up to a certain level,and the homo-ions Cd2+almost exerted no effect on the dye-surfactant complexation,establishing a theoretical foundation for simultaneous removal of organic dye and heavy metal using foam fractionation.Meanwhile,the effects of their interaction on foam performance were investigated.The results showed that the addition of Cd2+favored the tendency to ameliorate foam properties just contrary to MB.The feasibility of foam separation for dye and heavy metal removal from simulated wastewater was also confirmed using a continuous foam fractionator.In the simultaneous removal process,with the initial SDS concentration ranging from 0.5 to 5.0 retool/L,the maximum removal efticiencies of MB and Cd2+were obtained as 99.69%and 99.61%,respectively.The enrichment ratios were reduced from 24.34 to 7.65 for MB and from 22.01 to 3.35 for Cd2+.
基金the National Natural Science Foundation of China, No. 30672692
文摘This study investigated the effects of Yishendaluo decoction on the loss of blood-brain barrier integrity in mice exhibiting experimental autoimmune encephalomyelitis.To this end,we used real-time fluorescent quantitative PCR to measure the levels of mRNAs specific to the T cell markers CD4 and CD8,and the monocyte marker CD11b.In addition,we used Evans blue dye extravasation in the spinal cord and brain tissues to assess blood-brain barrier permeability.The results indicated that an increase in blood-brain barrier permeability was associated with an increase in CD4,CD8 and CD11b mRNA expression in experimental autoimmune encephalomyelitis mice.Yishendaluo decoction administration significantly reversed inflammatory cell accumulation in cerebral tissues of experimental autoimmune encephalomyelitis mice.
基金National Natural Science Foundation of China(Grant No.81573272)
文摘Zinc binding group(ZBG)is the crucial moiety in the chemical structure of any HDAC inhibitor.In the present study,a series of sulphur-containing ZBG were designed and synthesized in the novel HDAC inhibitors to replace the classical ZBGs of SAHA and BML-210,hydroxamic acids and benzamides,respectively.The HDAC inhibitory activity and the structure-activity relationships of these molecules were analyzed.A sulphur-rich group,diethylcarbamo(dithioperoxo)thioate,was finally identified as a novel potent ZBG.Among all the synthesized compounds,4 d was much more potent compared with BML-210,and it showed similar inhibitory effect of SAHA against HDAC isoforms 1 and 2.Therefore,it was chosen as a lead compound.
基金supported by National Natural Science Foundation of China(Nos.52173286,52207249)Major basic research project of Natural Science Foundation of Shandong Province(No.ZR2023ZD12)+1 种基金the State Key Laboratory of Marine Resource Utilization in South China Sea(Hainan University)(No.MRUKF2023013)Open Program of Guangxi Key Laboratory of Information Materials(No.221024-K)。
文摘Highly active cathode catalysts for efficient formation/decomposition of Li_(2)O_(2)are essential for the performance improvement of lithium-oxygen batteries(LOBs).In this study,a grain-refining Co_(0.85)Se catalyst with a lattice spacing of 2.69 A of(101)plane closely matching with the(100)plane(2.72A)of Li_(2)O_(2)was applied for high-performance LOBs.Highly(101)plane exposed Co_(0.85)Se@CNT was synthesized by a simple one-pot hydrothermal method.The Co_(0.85)Se with the lattice matching effect not only led to the efficient conversion and polarized growth of Li_(2)O_(2),but also prevented the formation of byproducts.Density functional theory(DFT)calculations reveal that Co_(0.85)Se(101)plane has the intrinsic catalytic ability to generate/decompose Li_(2)O_(2)during ORR/OER process,due to its homogeneous electron distribution,suitable adsorption energy,and promoted Li_(2)O_(2)growth kinetics.As a consequence,the(101)plane highly exposed Co_(0.85)Se@CNT-80 electrode exhibited remarkable cycle stability over 2400 h at 100 mA/g and 290cycles at 500 mA/g,which is about 2 times longer than other electrodes.
基金supported partially by the project of State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(LAPS21004)the National Natural Science Foundation of China(51972110,52102245,52072121)+5 种基金the Beijing Science and Technology Project(Z211100004621010)the Beijing Natural Science Foundation(2222076,2222077)the Huaneng Group Headquarters Science and Technology Project(HNKJ20-H88)the Hebei Natural Science Foundation(E2022502022)the Fundamental Research Funds for the Central Universities(2021MS028,2020MS023,2020MS028)the NCEPU“Double First-Class”Program。
文摘Polyethylene oxide(PEO)-based electrolytes are considered as one of the most promising solid-state electrolytes for next-generation lithium batteries with high safety and energy density;however,the drawbacks such as insufficient ion conductance,mechanical strength and electrochemical stability hinder their applications in metallic lithium batteries.To enhance their overall properties,flexible and thin composite polymer electrolyte(CPE)membranes with 3D continuous aramid nanofiber(ANF)–Li_(1.4)Al_(0.4)Ti_(1.6)(PO_(4))_(3)(LATP)nanoparticle hybrid frameworks are facilely prepared by filling PEO–Li TFSI in the 3D nanohybrid scaffolds via a solution infusion way.The construction of the 3D continuous nanohybrid networks can effectively inhibit the PEO crystallization,facilitate the lithium salt dissociation and meanwhile increase the fast-ion transport in the continuous LATP electrolyte phase,and thus greatly improving the ionic conductivity(~3 times that of the pristine one).With the integration of the 3D continuity and flexibility of the 3D ANF networks and the thermostability of the LATP phase,the CPE membranes also show a wider electrochemical window(~5.0 V vs.4.3 V),higher tensile strength(~4–10times that of the pristine one)and thermostability,and better lithium dendrite resistance capability.Furthermore,the CPE-based Li FePO_(4)/Li cells exhibit superior cycling stability(133 m Ah/g after 100 cycles at 0.3 C)and rate performance(100 m Ah/g at 1 C)than the pristine electrolyte-based cell(79 and 29m Ah/g,respectively).This work offers an important CPE design criteria to achieve comprehensivelyupgraded solid-state electrolytes for safe and high-energy metal battery applications.