The paper presents the research on self-balancing two-wheels mobile robot control system analysis with experimental studies.The research problem in this work is to stabilize the mobile robot with self-control and to c...The paper presents the research on self-balancing two-wheels mobile robot control system analysis with experimental studies.The research problem in this work is to stabilize the mobile robot with self-control and to carry the sensitive things without failing in a long span period.The main objective of this study is to focus on the mathematical modelling of mobile robot from laboratory scale to real world applications.The numerical expression with mathematical modelling is very important to control the mobile robot system with linearization.The fundamental concepts of dynamic system stability were utilized for maintaining the stability of the constructed mobile robot system.The controller design is also important for checking the stability and the appropriate controller design is proportional,integral,and derivative-PID controller and Linear Quadratic Regulator(LQR).The steady state error could be reduced by using such kind of PID controller.The simulation of numerical expression on mathematical modeling was conducted in MATLAB environments.The confirmation results from the simulation techniques were applied to construct the hardware design of mobile robot system for practical study.The results from simulation approaches and experimental approaches are matched in various kinds of analyses.The constructed mobile robot system was designed and analyzed in the control system design laboratory of Yangon Technological University(YTU).展开更多
The system analysis of specific absorption rate(SAR)in human body exposed to a base station antenna by using finite difference time domain techniques was presented in this research works.The objectives of ...The system analysis of specific absorption rate(SAR)in human body exposed to a base station antenna by using finite difference time domain techniques was presented in this research works.The objectives of this work are to evaluate the knowledge and awareness about SAR among human body and mobile base station.The paper investigates the electromagnetic wave absorption inside a human body.The human body has been identified using dataset based on 2D object considering different electrical parameters.The SAR convinced inside the human body model exposed to a radiating base station antenna(BSA)has been considered for multiple numbers of carrier frequencies and input power of 20 W/carrier at GSM 900 band.The distance(R)of human body from BSA is varied in the range of 0.1 m to 5.0 m.For the number of carrier frequency equal to one and R=0.1 m,the concentrated value of whole-body average SAR obtained by FDTD technique is found to be 0.68 W/kg which decreases either with increase of R or decrease of number of carrier frequencies.Safety distance for general public is found to be 1.5 m for number of carrier frequencies equal to one.The performance accuracy of this analysis meets the high level condition by comparing with the relevant system development in recent time.展开更多
基金fully supported by Government Research Funds for 2021-2022 Academic Year.
文摘The paper presents the research on self-balancing two-wheels mobile robot control system analysis with experimental studies.The research problem in this work is to stabilize the mobile robot with self-control and to carry the sensitive things without failing in a long span period.The main objective of this study is to focus on the mathematical modelling of mobile robot from laboratory scale to real world applications.The numerical expression with mathematical modelling is very important to control the mobile robot system with linearization.The fundamental concepts of dynamic system stability were utilized for maintaining the stability of the constructed mobile robot system.The controller design is also important for checking the stability and the appropriate controller design is proportional,integral,and derivative-PID controller and Linear Quadratic Regulator(LQR).The steady state error could be reduced by using such kind of PID controller.The simulation of numerical expression on mathematical modeling was conducted in MATLAB environments.The confirmation results from the simulation techniques were applied to construct the hardware design of mobile robot system for practical study.The results from simulation approaches and experimental approaches are matched in various kinds of analyses.The constructed mobile robot system was designed and analyzed in the control system design laboratory of Yangon Technological University(YTU).
基金This work is collaborative research with the Department of Electronics&Communication Engineering,Acharya Institute of Technology,Bengaluru,India.And also this work is a collaborative research between Yangon Technological University and University of Oulu in Finland based on the enhancement of Telecommunication Engineering Education in YTU.This work is fully supported by the government research funds of 2020-2021 academic year which is the grant no of GB/D(4)2020/4.
文摘The system analysis of specific absorption rate(SAR)in human body exposed to a base station antenna by using finite difference time domain techniques was presented in this research works.The objectives of this work are to evaluate the knowledge and awareness about SAR among human body and mobile base station.The paper investigates the electromagnetic wave absorption inside a human body.The human body has been identified using dataset based on 2D object considering different electrical parameters.The SAR convinced inside the human body model exposed to a radiating base station antenna(BSA)has been considered for multiple numbers of carrier frequencies and input power of 20 W/carrier at GSM 900 band.The distance(R)of human body from BSA is varied in the range of 0.1 m to 5.0 m.For the number of carrier frequency equal to one and R=0.1 m,the concentrated value of whole-body average SAR obtained by FDTD technique is found to be 0.68 W/kg which decreases either with increase of R or decrease of number of carrier frequencies.Safety distance for general public is found to be 1.5 m for number of carrier frequencies equal to one.The performance accuracy of this analysis meets the high level condition by comparing with the relevant system development in recent time.