期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
EduStudio:towards a unified library for student cognitive modeling
1
作者 Le WU Xiangzhi CHEN +9 位作者 Fei LIU Junsong XIE Chenao XIA Zhengtao TAN Mi TIAN Jinglong LI Kun ZHANG defu lian Richang HONG Meng WANG 《Frontiers of Computer Science》 2025年第8期47-62,共16页
Student cognitive modeling is a fundamental task in the intelligence education field.It serves as the basis for various downstream applications,such as student profiling,personalized educational content recommendation... Student cognitive modeling is a fundamental task in the intelligence education field.It serves as the basis for various downstream applications,such as student profiling,personalized educational content recommendation,and adaptive testing.Cognitive Diagnosis(CD)and Knowledge Tracing(KT)are two mainstream categories for student cognitive modeling,which measure the cognitive ability from a limited time(e.g.,an exam)and the learning ability dynamics over a long period(e.g.,learning records from a year),respectively.Recent efforts have been dedicated to the development of open-source code libraries for student cognitive modeling.However,existing libraries often focus on a particular category and overlook the relationships between them.Additionally,these libraries lack sufficient modularization,which hinders reusability.To address these limitations,we have developed a unified PyTorch-based library EduStudio,which unifies CD and KT for student cognitive modeling.The design philosophy of EduStudio is from two folds.From a horizontal perspective,EduStudio employs the modularization that separates the main step pipeline of each algorithm.From a vertical perspective,we use templates with the inheritance style to implement each module.We also provide eco-services of EduStudio,such as the repository that collects resources about student cognitive modeling and the leaderboard that demonstrates comparison among models.Our open-source project is available at the website of edustudio.ai. 展开更多
关键词 open-source library student cognitive modeling intelligence education
原文传递
Advanced forecasting of career choices for college students based on campus big data 被引量:3
2
作者 Min NIE Lei YANG +4 位作者 Jun SUN Han SU Hu XIA defu lian Kai YAN 《Frontiers of Computer Science》 SCIE EI CSCD 2018年第3期494-503,共10页
Career indecision is a difficult obstacle confronting adolescents. Traditional vocational assessment research measures it by means of questionnaires and diagnoses the potential sources of career indecision. Based on t... Career indecision is a difficult obstacle confronting adolescents. Traditional vocational assessment research measures it by means of questionnaires and diagnoses the potential sources of career indecision. Based on the diagnostic outcomes, career counselors develop treatment plans tailored to students. However, because of personal motives and the architecture of the mind, it may be difficult for students to know themselves, and the outcome of questionnaires may not fully reflect their inner states and statuses. Selfperception theory suggests that students' behavior could be used as a clue for inference. Thus, we proposed a data-driven framework for forecasting student career choice upon graduation based on their behavior in and around the campus, thereby playing an important role in supporting career counseling and career guidance. By evaluating on 10M behavior data of over four thousand students, we show the potential of this framework for this functionality. 展开更多
关键词 campus big data career identity career choiceprediction SELF-KNOWLEDGE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部