Transient stability assessment(TSA)based on artificial intelligence typically has two distinct model management approaches:a unified management approach for all faulted lines and a separate management approach for eac...Transient stability assessment(TSA)based on artificial intelligence typically has two distinct model management approaches:a unified management approach for all faulted lines and a separate management approach for each faulted line.To address the shortcomings of the aforementioned approaches,namely accuracy,training time,and model management complexity,a multi-model management approach for power system TSA based on multi-moment feature clustering has been proposed.First,the steady-state and transient features present under fault conditions were obtained through a transient simulation of line faults.The input sample set was then constructed using the aforementioned multi-moment electrical features and the embedded faulty line numbers.Subsequently,K-means clustering was conducted on each line based on the similarity of their electrical features,employing t-SNE dimensionality reduction.The PSO-CNN model was trained separately for each cluster to generate several independent TSA models.Finally,a model effectiveness evaluation system consisting of five metrics was established,and the effect of the sample imbalance ratio on the model effectiveness was investigated.The model effectiveness was evaluated using the IEEE 39-bus system algorithm.The results showed that the multi-model management strategy based on multi-moment feature clustering can effectively combine the two advantages of superior evaluation performance and streamlined model management by fully extracting system features.Moreover,this approach allows for more flexible adjustments to line topology changes.展开更多
Real-world networks exhibit complex topological interactions that pose a significant computational challenge to analyses of such networks.Due to limited resources,there is an urgent need to develop dimensionality redu...Real-world networks exhibit complex topological interactions that pose a significant computational challenge to analyses of such networks.Due to limited resources,there is an urgent need to develop dimensionality reduction techniques that can significantly reduce the structural complexity of initial large-scale networks.In this paper,we propose a subgraph extraction method based on the node centrality measure to reduce the size of the initial network topology.Specifically,nodes with smaller centrality value are removed from the initial network to obtain a subgraph with a smaller size.Our results demonstrate that various real-world networks,including power grids,technology,transportation,biology,social,and language networks,exhibit self-similarity behavior during the reduction process.The present results reveal the selfsimilarity and scale invariance of real-world networks from a different perspective and also provide an effective guide for simplifying the topology of large-scale networks.展开更多
Dear Editor, As a promising multi-agent systems(MASs) operation, autonomous interception has attracted more and more attentions in these years, where defenders prevent intruders from reaching destinations.So far, most...Dear Editor, As a promising multi-agent systems(MASs) operation, autonomous interception has attracted more and more attentions in these years, where defenders prevent intruders from reaching destinations.So far, most of the relevant methods are applied in ideal environments without agent damages. As a remedy, this letter proposes a more realistic interception method for MASs suffered by damages.展开更多
基金supported by the Science and Technology Project of SGCC(5100-202199558A-0-5-ZN).
文摘Transient stability assessment(TSA)based on artificial intelligence typically has two distinct model management approaches:a unified management approach for all faulted lines and a separate management approach for each faulted line.To address the shortcomings of the aforementioned approaches,namely accuracy,training time,and model management complexity,a multi-model management approach for power system TSA based on multi-moment feature clustering has been proposed.First,the steady-state and transient features present under fault conditions were obtained through a transient simulation of line faults.The input sample set was then constructed using the aforementioned multi-moment electrical features and the embedded faulty line numbers.Subsequently,K-means clustering was conducted on each line based on the similarity of their electrical features,employing t-SNE dimensionality reduction.The PSO-CNN model was trained separately for each cluster to generate several independent TSA models.Finally,a model effectiveness evaluation system consisting of five metrics was established,and the effect of the sample imbalance ratio on the model effectiveness was investigated.The model effectiveness was evaluated using the IEEE 39-bus system algorithm.The results showed that the multi-model management strategy based on multi-moment feature clustering can effectively combine the two advantages of superior evaluation performance and streamlined model management by fully extracting system features.Moreover,this approach allows for more flexible adjustments to line topology changes.
基金the Science and Technology Project of State Grid Corporation of China(Grant No.5100-202199557A-0-5-ZN)。
文摘Real-world networks exhibit complex topological interactions that pose a significant computational challenge to analyses of such networks.Due to limited resources,there is an urgent need to develop dimensionality reduction techniques that can significantly reduce the structural complexity of initial large-scale networks.In this paper,we propose a subgraph extraction method based on the node centrality measure to reduce the size of the initial network topology.Specifically,nodes with smaller centrality value are removed from the initial network to obtain a subgraph with a smaller size.Our results demonstrate that various real-world networks,including power grids,technology,transportation,biology,social,and language networks,exhibit self-similarity behavior during the reduction process.The present results reveal the selfsimilarity and scale invariance of real-world networks from a different perspective and also provide an effective guide for simplifying the topology of large-scale networks.
基金supported by the Science and Technology Project of State Grid Corporation of China, China (5100202199557A-0-5-ZN)。
文摘Dear Editor, As a promising multi-agent systems(MASs) operation, autonomous interception has attracted more and more attentions in these years, where defenders prevent intruders from reaching destinations.So far, most of the relevant methods are applied in ideal environments without agent damages. As a remedy, this letter proposes a more realistic interception method for MASs suffered by damages.