The present study aims to fabricate heterogeneous electro-Fenton(HEF)cathode catalysts for the in-situ generation of H2O2 and the degradation of organic pollutants in water.To achieve this,preparation of Fe and N co-d...The present study aims to fabricate heterogeneous electro-Fenton(HEF)cathode catalysts for the in-situ generation of H2O2 and the degradation of organic pollutants in water.To achieve this,preparation of Fe and N co-doped MXene composites(FeCN/MXene-x,where x represents the loading content of FeCN)and construction of the HEF system for the degradation of sulfathiazole(STZ)were carried out.The characterization results showed that Fe,C and N mainly existed in the form of Fe3C and Fe3N in the FeCN/MXene catalysts,which were favorable for promoting the ORR reaction in the HEF system.Among them,FeCN/MXene-2 exhibited the highest redox electron transfer rate and H2O2 selectivity(86%).The catalytic oxidation mechanism of the FeCN/MXene-2/HEF system was investigated by free radical quenching,electron paramagnetic resonance and frontier orbital theory studies.These studies demonstrated that the main active substances for the degradation of STZ were·OH and 1O2.In addition,the excellent stability and practical performance of the prepared cathodic catalysts were demonstrated by cycling experiments and real water sample tests.展开更多
The compact torus injector(CTI)for the central fueling of the EAST tokamak has undergone significant upgrades to enhance its injection capability.During the initial phase of the platform testing phase,EAST-CTI demonst...The compact torus injector(CTI)for the central fueling of the EAST tokamak has undergone significant upgrades to enhance its injection capability.During the initial phase of the platform testing phase,EAST-CTI demonstrated relatively low performance,with a maximum velocity of 150 km s^(−1) and a single compact torus(CT)plasma mass of 90μg[Kong D et al 2023 Plasma Sci.Technol.25065601].These parameters were insufficient for conducting central fueling experiments on the EAST tokamak.Consequently,extensive upgrades were carried out to improve the performance of the EAST-CTI system.The compression region was extended from 280 mm to 700 mm to prevent rapid compression and deceleration of the CT plasma,along with an extension of the acceleration region to further increase the plasma acceleration.The power supply system has also been upgraded.These improvements elevated the operating voltage from 8 kV to 15 kV,increased the discharge current from 120 kA to 300 kA and enabled repetitive operation at a maximum rate of 2 Hz.As a result,significant advances in EAST-CTI performance were achieved,with the maximum velocity increasing to 330 km s^(−1) and the CT plasma density reaching 1.5×10^(22) m^(−3),thereby enhancing the system capability for future fueling experiments on EAST.This study offers valuable insights into CTI modification and the improvement of central fueling systems for prospective fusion reactors.展开更多
Printed Circuit Board(PCB)surface tiny defect detection is a difficult task in the integrated circuit industry,especially since the detection of tiny defects on PCB boards with large-size complex circuits has become o...Printed Circuit Board(PCB)surface tiny defect detection is a difficult task in the integrated circuit industry,especially since the detection of tiny defects on PCB boards with large-size complex circuits has become one of the bottlenecks.To improve the performance of PCB surface tiny defects detection,a PCB tiny defects detection model based on an improved attention residual network(YOLOX-AttResNet)is proposed.First,the unsupervised clustering performance of the K-means algorithm is exploited to optimize the channel weights for subsequent operations by feeding the feature mapping into the SENet(Squeeze and Excitation Network)attention network;then the improved K-means-SENet network is fused with the directly mapped edges of the traditional ResNet network to form an augmented residual network(AttResNet);and finally,the AttResNet module is substituted for the traditional ResNet structure in the backbone feature extraction network of mainstream excellent detection models,thus improving the ability to extract small features from the backbone of the target detection network.The results of ablation experiments on a PCB surface defect dataset show that AttResNet is a reliable and efficient module.In Torify the performance of AttResNet for detecting small defects in large-size complex circuit images,a series of comparison experiments are further performed.The results show that the AttResNet module combines well with the five best existing target detection frameworks(YOLOv3,YOLOX,Faster R-CNN,TDD-Net,Cascade R-CNN),and all the combined new models have improved detection accuracy compared to the original model,which suggests that the AttResNet module proposed in this paper can help the detection model to extract target features.Among them,the YOLOX-AttResNet model proposed in this paper performs the best,with the highest accuracy of 98.45% and the detection speed of 36 FPS(Frames Per Second),which meets the accuracy and real-time requirements for the detection of tiny defects on PCB surfaces.This study can provide some new ideas for other real-time online detection tasks of tiny targets with high-resolution images.展开更多
A new compact torus injector(KTX-CTI)has been built for injection experiments on the Keda Torus eXperiment(KTX)reversed field pinch(RFP).The aim is to study the fundamental physics governing the compact torus(CT)centr...A new compact torus injector(KTX-CTI)has been built for injection experiments on the Keda Torus eXperiment(KTX)reversed field pinch(RFP).The aim is to study the fundamental physics governing the compact torus(CT)central fueling processes.In experiments conducted under the sole influence of a 0.1 T toroidal magnetic field,the injected CT successfully penetrated the entire toroidal magnetic field,reaching the inner wall of the KTX vacuum vessel.Upon reaching the inner wall,the CT diffused both radially outward and toroidally within the vessel at a discernible diffusion speed.Moreover,the inherent helicity within the CT induced a modest KTX plasma current of 200 A,consistent with predictions based on helicity conservation.CT injection demonstrated the capability to initiate KTX discharges at low loop voltages,suggesting its potential as a pre-ionization and current startup technique.During RFP discharges featuring CT injection,the central plasma density was found to exceed the Greenwald density limit,with more peaked density profiles,indicating the predominant confinement of CT plasma within the core region of the KTX bulk plasma.展开更多
<strong>Objective: </strong>The article is to investigate the relationship between the polymorphism of transcription factor 7-like 2 (TCF7L2) gene rs7903146 and type 2 diabetes mellitus with obesity in Chi...<strong>Objective: </strong>The article is to investigate the relationship between the polymorphism of transcription factor 7-like 2 (TCF7L2) gene rs7903146 and type 2 diabetes mellitus with obesity in Chinese Han population. <strong>Methods: </strong>216 patients with type 2 diabetes mellitus (T2DM), 92 males, 124 females, 194 normal controls, 89 males and 105 females. The polymorphism of TCF7L2 gene rs7903146 was measured by PCR-RFLP. PCR amplifier was used for amplification reaction, followed by polymorphism analysis of TCF7L2 gene: the reaction system was 20 μl, among which restriction endonuclease was 0.5 μl and PCR product was 7.5 μl. Restriction enzyme SspI (Fermentas) was used for PCR product and was bathed at 37<span style="white-space:nowrap;">°</span>C for 16 h. The enzyme digestion products were detected and genotypes were identified by 2% agarose gel electrophoresis. The genotyping was repeated in 10% of the samples, and the genotyping rate was 100%. Height and weight were measured and BMI calculated. According to BMI, the experimental group was further divided into the obese group (n = 137, BMI > 25 kg/m<sup>2</sup>) and the normal body mass group (n = 79, BMI < 25 kgm<sup>2</sup>). Normal control group: BMI < 25 kgm<sup>2</sup>: FBG < 6.1 mmol/L and 2 h BG < 7.8 mmol/L after meal. Finally, SPSS18.0 software was used for analysis. <strong>Results:</strong> FBG, 2 h BG, FIN and Lg homa-ir showed significant differences between the control group and the T2DM groups (<em>P</em> < 0.01), while no statistical difference was found between the other parameters (<em>P</em> > 0.05). There was a significant difference in genotype frequency between the control group and the experimental group (<em>χ</em><sup>2</sup> = 17.382, <em>P</em> < 0.001), but no significant difference in allele frequency between the control group and the T2DM group (<em>P</em> > 0.05). Genotype frequency at BMI level was significantly different between the control group and the T2DM group (<em>χ</em><sup>2</sup> = 20.427, <em>P</em> = 0.001), but there was no significant difference in allele frequency distribution (<em>P</em> > 0.05). The TT type and TC + CC type were significantly different between the T2DM group and the control group (<em>χ</em><sup>2</sup> = 78.154, <em>P</em> = 0.006) and the T2DM obesity group and the control group (<em>χ</em><sup>2</sup> = 7.247, <em>P</em> = 0.009), but there was no significant difference between the T2DM normal body mass group and the control group (<em>P</em> > 0.05). In addition, there was no significant difference between TC type + TT type and CC type between the T2DM group and the control group and the T2DM obesity group and the control group (<em>P</em> > 0.05). <strong>Conclusion:</strong> There were significant differences in the genotype frequency and recessive inheritance pattern (TT/CC + TC) of rs7903146, suggesting that this SNP may be associated with the incidence of T2DM in obesity and insulin resistance.展开更多
Compact torus(CT)injection is a highly promising technique for the central fueling of future reactor-grade fusion devices since it features extremely high injection velocity and relatively high plasma mass.Recently,a ...Compact torus(CT)injection is a highly promising technique for the central fueling of future reactor-grade fusion devices since it features extremely high injection velocity and relatively high plasma mass.Recently,a CT injector for the EAST tokamak,EAST-CTI,was developed and platform-tested.In the first round of experiments conducted with low parameter settings,the maximum velocity and mass of the CT plasma were 150 km·s^(-1)and 90μg,respectively.However,the parameters obtained by EAST-CTI were still very low and were far from the requirements of a device such as EAST that has a strong magnetic field.In future,we plan to solve the spark problem that EAST-CTI currently encounters(that mainly hinders the further development of experiments)through engineering methods,and use greater power to obtain a more stable and suitable CT plasma for EAST.展开更多
A compact torus injection system,KTX-CTI,has been developed for the planned injection experiments on the Keda Torus e Xperiment(KTX)reversed field pinch(RFP)device to investigate the physics and engineering issues ass...A compact torus injection system,KTX-CTI,has been developed for the planned injection experiments on the Keda Torus e Xperiment(KTX)reversed field pinch(RFP)device to investigate the physics and engineering issues associated with interaction between a compact torus(CT)and RFP.The key interests include fueling directly into the reactor center,confinement improvement,and the injection of momentum and helicity into the RFP discharges.The CT velocity and mass have been measured using a multichannel optical fiber interferometer,and for the first time the time evolution of the CT density profile during CT propagation is obtained.The effects of discharge parameters on the number of injected particles,CT velocity and CT density have been characterized:the maximum hydrogen CT plasma mass,m,CTis 50μg,corresponding to 30%of the mass in a typical KTX plasma;the CT velocity exceeds 120 km s-1.It is observed for the first time that multiple CTs can be produced and emitted during a very short period(<100μs)in one discharge,which is significant for the future study of repetitive CT injection,even with an ultra-high frequency.展开更多
In this work,the high-energy-density plasmas(HEDP)evolved from joule-class-femtosecond-laser-irradiated nanowire-array(NWA)targets were numerically and experimentally studied.The results of particle-in-cell simulation...In this work,the high-energy-density plasmas(HEDP)evolved from joule-class-femtosecond-laser-irradiated nanowire-array(NWA)targets were numerically and experimentally studied.The results of particle-in-cell simulations indicate that ions accelerated in the sheath field around the surfaces of the nanowires are eventually confined in a plasma,contributing most to the high energy densities.The protons emitted from the front surfaces of the NWA targets provide rich information about the interactions that occur.We give the electron and ion energy densities for broad target parameter ranges.The ion energy densities from NWA targets were found to be an order of magnitude higher than those from planar targets,and the volume of the HEDP was several-fold greater.At optimal target parameters,8%of the laser energy can be converted to confined protons,and this results in ion energy densities at the GJ/cm^(3) level.In the experiments,the measured energy of the emitted protons reached 4 MeV,and the changes in energy with the NWA’s parameters were found to fit the simulation results well.Experimental measurements of neutrons from 2H(d,n)3He fusion with a yield of(24±18)×10^(6)/J from deuterated polyethylene NWA targets also confirmed these results.展开更多
Compact torus(CT)injection is one of the most promising methods for the central fuelling of next-generation reactor-grade fusion devices due to its high density,high velocity,and selfcontained magnetised structure.A n...Compact torus(CT)injection is one of the most promising methods for the central fuelling of next-generation reactor-grade fusion devices due to its high density,high velocity,and selfcontained magnetised structure.A newly compact torus injector(CTI)device in Keda Torus e Xperiment(KTX),named KTX-CTI,was successfully developed and tested at the University of Science and Technology in China.In this study,first,we briefly introduce the basic principles and structure of KTX-CTI,and then,present an accurate circuit model that relies on nonlinear regression analysis(NRA)for studying the current waveform of the formation region.The current waveform,displacement,and velocity of CT plasma in the acceleration region are calculated using this NRA-based one-dimensional point model.The model results were in good agreement with the experiments.The next-step upgrading reference scheme of the KTX-CTI device is preliminarily investigated using this NRA-based point model.This research can provide insights for the development of experiments and future upgrades of the device.展开更多
Tritium self-sufficiency in future deuterium–tritium fusion reactors is a crucial challenge.As an engineering test reactor,the China Fusion Engineering Test Reactor requires a burning fraction of 3%for the goal to te...Tritium self-sufficiency in future deuterium–tritium fusion reactors is a crucial challenge.As an engineering test reactor,the China Fusion Engineering Test Reactor requires a burning fraction of 3%for the goal to test the accessibility to the future fusion plant.To self-consistently simulate burning plasmas with profile changes in pellet injection scenarios and to estimate the corresponding burning fraction,a one-dimensional multi-species radial transport model is developed in the BOUT++framework.Several pellet-fueling scenarios are then tested in the model.The results show that the increased fueling depth improves the burning fraction by particle confinement improvement and fusion power increase.Nevertheless,by increasing the depth,the pellet cooling-down may significantly lower the temperature in the core region.Taking the density perturbation into consideration,the reasonable parameters of the fueling scenario in these simulations are estimated as pellet radius r_(p)=3 mm,injection rate=4 Hz,and pellet injection velocity=1000–2000 m s^(-1) without drift or 450 m s^(-1) with high-field-side drift.展开更多
The essential role of zonal flow in the L-H transition and the suppression of turbulence have been studied with a long range correlation technique using Langmuir probe arrays in EAST tokamak.Two toroidally localized p...The essential role of zonal flow in the L-H transition and the suppression of turbulence have been studied with a long range correlation technique using Langmuir probe arrays in EAST tokamak.Two toroidally localized probe arrays are used to measure the zonal flow during L-H transition and H-L back transition.The energy ratio of the low frequency zonal flow to the total drift wave turbulence is calculated.During ELM-free H mode,the energy ratio is higher than that in L mode,which reveals the important role of zonal flows in regulating turbulence amplitude in L-H transition.展开更多
1 Overview of the EAST device The Experimental Advanced Superconducting Tokamak(EAST),a national key scientific project of the“Ninth Five-Year Plan,”is the world’s first fully superconducting non-circular cross-sec...1 Overview of the EAST device The Experimental Advanced Superconducting Tokamak(EAST),a national key scientific project of the“Ninth Five-Year Plan,”is the world’s first fully superconducting non-circular cross-section tokamak fusion experiment device designed and developed independently by China.The principle of tokamak nuclear fusion is creating a toroidal magnetic cage through magnetic fields.This approach uses the tendency of charged particles to spiral along magnetic field lines,thereby confining high-temperature and high-density deuterium-tritium plasmas to increase the probability of nuclear reactions and achieve fusion energy output.展开更多
To meet the demands of laser-ion acceleration at a high repetition rate,we have developed a comprehensive diagnostic system for real-time and in situ monitoring of liquid sheet targets(LSTs).The spatially resolved rap...To meet the demands of laser-ion acceleration at a high repetition rate,we have developed a comprehensive diagnostic system for real-time and in situ monitoring of liquid sheet targets(LSTs).The spatially resolved rapid characterizations of an LST’s thickness,flatness,tilt angle and position are fulfilled by different subsystems with high accuracy.With the help of the diagnostic system,we reveal the dependence of thickness distribution on collision parameters and report the 238-nm liquid sheet generated by the collision of two liquid jets.Control methods for the flatness and tilt angle of LSTs have also been provided,which are essential for applications of laser-driven ion acceleration and others.展开更多
Carbon nanotube foams(CNFs)have been successfully used as near-critical-density targets in the laser-driven acceleration of high-energy ions and electrons.Here we report the recent advances in the fabrication techniqu...Carbon nanotube foams(CNFs)have been successfully used as near-critical-density targets in the laser-driven acceleration of high-energy ions and electrons.Here we report the recent advances in the fabrication technique of such targets.With the further developed floating catalyst chemical vapor deposition(FCCVD)method,large-area(>25 cm^(2))and highly uniform CNFs are successfully deposited on nanometer-thin metal or plastic foils as double-layer targets.The density and thickness of the CNF can be controlled in the range of 1−13 mg/cm^(3)and 10−200µm,respectively,by varying the synthesis parameters.The dependence of the target properties on the synthesis parameters and the details of the target characterization methods are presented for the first time.展开更多
Post-acceleration of protons in helical coil targets driven by intense,ultrashort laser pulses can enhance ion energy by utilizing the transient current from the targets’self-discharge.The acceleration length of prot...Post-acceleration of protons in helical coil targets driven by intense,ultrashort laser pulses can enhance ion energy by utilizing the transient current from the targets’self-discharge.The acceleration length of protons can exceed a few millimeters,and the acceleration gradient is of the order of GeV/m.How to ensure the synchronization between the accelerating electric field and the protons is a crucial problem for efficient post-acceleration.In this paper,we study how the electric field mismatch induced by current dispersion affects the synchronous acceleration of protons.We propose a scheme using a two-stage helical coil to control the current dispersion.With optimized parameters,the energy gain of protons is increased by four times.Proton energy is expected to reach 45 MeV using a hundreds-of-terawatts laser,or more than 100 MeV using a petawatt laser,by controlling the current dispersion.展开更多
基金supported by the National Key R&D Program of China(No.2019YFC0408500)the Key Science and Technology Projects of Anhui Province(No.202003a07020004)the Open Foundation of the Key Lab(Center)of Anhui Institute of Ecological Civilization(No.W2023JSKF0152).
文摘The present study aims to fabricate heterogeneous electro-Fenton(HEF)cathode catalysts for the in-situ generation of H2O2 and the degradation of organic pollutants in water.To achieve this,preparation of Fe and N co-doped MXene composites(FeCN/MXene-x,where x represents the loading content of FeCN)and construction of the HEF system for the degradation of sulfathiazole(STZ)were carried out.The characterization results showed that Fe,C and N mainly existed in the form of Fe3C and Fe3N in the FeCN/MXene catalysts,which were favorable for promoting the ORR reaction in the HEF system.Among them,FeCN/MXene-2 exhibited the highest redox electron transfer rate and H2O2 selectivity(86%).The catalytic oxidation mechanism of the FeCN/MXene-2/HEF system was investigated by free radical quenching,electron paramagnetic resonance and frontier orbital theory studies.These studies demonstrated that the main active substances for the degradation of STZ were·OH and 1O2.In addition,the excellent stability and practical performance of the prepared cathodic catalysts were demonstrated by cycling experiments and real water sample tests.
基金supported by the National MCF Energy R&D Program of China(Nos.2024YFE03130001 and 2024YFE03130002)the Institute of Energy,Hefei Comprehensive National Science Center(Anhui Energy Laboratory)(Nos.21KZS202 and 23KHH140)+3 种基金the University Synergy Innovation Program of Anhui Province(Nos.GXXT-2021-014 and GXXT-2021-029)National Natural Science Foundation of China(Nos.12105088 and 12305247)the Fundamental Research Funds for the Central Universities of China(No.PA2024GDSK0097)the Anhui Province Key Research and Development Plan Program(Nos.202304a05020006 and 2021006).
文摘The compact torus injector(CTI)for the central fueling of the EAST tokamak has undergone significant upgrades to enhance its injection capability.During the initial phase of the platform testing phase,EAST-CTI demonstrated relatively low performance,with a maximum velocity of 150 km s^(−1) and a single compact torus(CT)plasma mass of 90μg[Kong D et al 2023 Plasma Sci.Technol.25065601].These parameters were insufficient for conducting central fueling experiments on the EAST tokamak.Consequently,extensive upgrades were carried out to improve the performance of the EAST-CTI system.The compression region was extended from 280 mm to 700 mm to prevent rapid compression and deceleration of the CT plasma,along with an extension of the acceleration region to further increase the plasma acceleration.The power supply system has also been upgraded.These improvements elevated the operating voltage from 8 kV to 15 kV,increased the discharge current from 120 kA to 300 kA and enabled repetitive operation at a maximum rate of 2 Hz.As a result,significant advances in EAST-CTI performance were achieved,with the maximum velocity increasing to 330 km s^(−1) and the CT plasma density reaching 1.5×10^(22) m^(−3),thereby enhancing the system capability for future fueling experiments on EAST.This study offers valuable insights into CTI modification and the improvement of central fueling systems for prospective fusion reactors.
基金supported by the National Natural Science Foundation of China(No.61976083)Hubei Province Key R&D Program of China(No.2022BBA0016).
文摘Printed Circuit Board(PCB)surface tiny defect detection is a difficult task in the integrated circuit industry,especially since the detection of tiny defects on PCB boards with large-size complex circuits has become one of the bottlenecks.To improve the performance of PCB surface tiny defects detection,a PCB tiny defects detection model based on an improved attention residual network(YOLOX-AttResNet)is proposed.First,the unsupervised clustering performance of the K-means algorithm is exploited to optimize the channel weights for subsequent operations by feeding the feature mapping into the SENet(Squeeze and Excitation Network)attention network;then the improved K-means-SENet network is fused with the directly mapped edges of the traditional ResNet network to form an augmented residual network(AttResNet);and finally,the AttResNet module is substituted for the traditional ResNet structure in the backbone feature extraction network of mainstream excellent detection models,thus improving the ability to extract small features from the backbone of the target detection network.The results of ablation experiments on a PCB surface defect dataset show that AttResNet is a reliable and efficient module.In Torify the performance of AttResNet for detecting small defects in large-size complex circuit images,a series of comparison experiments are further performed.The results show that the AttResNet module combines well with the five best existing target detection frameworks(YOLOv3,YOLOX,Faster R-CNN,TDD-Net,Cascade R-CNN),and all the combined new models have improved detection accuracy compared to the original model,which suggests that the AttResNet module proposed in this paper can help the detection model to extract target features.Among them,the YOLOX-AttResNet model proposed in this paper performs the best,with the highest accuracy of 98.45% and the detection speed of 36 FPS(Frames Per Second),which meets the accuracy and real-time requirements for the detection of tiny defects on PCB surfaces.This study can provide some new ideas for other real-time online detection tasks of tiny targets with high-resolution images.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2022YFE03100000 and 2017YFE0301701)National Natural Science Foundation of China(Nos.12375226,11875255,11635008,11375188 and 11975231)the Fundamental Research Funds for the Central Universities(No.wk34200000022)。
文摘A new compact torus injector(KTX-CTI)has been built for injection experiments on the Keda Torus eXperiment(KTX)reversed field pinch(RFP).The aim is to study the fundamental physics governing the compact torus(CT)central fueling processes.In experiments conducted under the sole influence of a 0.1 T toroidal magnetic field,the injected CT successfully penetrated the entire toroidal magnetic field,reaching the inner wall of the KTX vacuum vessel.Upon reaching the inner wall,the CT diffused both radially outward and toroidally within the vessel at a discernible diffusion speed.Moreover,the inherent helicity within the CT induced a modest KTX plasma current of 200 A,consistent with predictions based on helicity conservation.CT injection demonstrated the capability to initiate KTX discharges at low loop voltages,suggesting its potential as a pre-ionization and current startup technique.During RFP discharges featuring CT injection,the central plasma density was found to exceed the Greenwald density limit,with more peaked density profiles,indicating the predominant confinement of CT plasma within the core region of the KTX bulk plasma.
文摘<strong>Objective: </strong>The article is to investigate the relationship between the polymorphism of transcription factor 7-like 2 (TCF7L2) gene rs7903146 and type 2 diabetes mellitus with obesity in Chinese Han population. <strong>Methods: </strong>216 patients with type 2 diabetes mellitus (T2DM), 92 males, 124 females, 194 normal controls, 89 males and 105 females. The polymorphism of TCF7L2 gene rs7903146 was measured by PCR-RFLP. PCR amplifier was used for amplification reaction, followed by polymorphism analysis of TCF7L2 gene: the reaction system was 20 μl, among which restriction endonuclease was 0.5 μl and PCR product was 7.5 μl. Restriction enzyme SspI (Fermentas) was used for PCR product and was bathed at 37<span style="white-space:nowrap;">°</span>C for 16 h. The enzyme digestion products were detected and genotypes were identified by 2% agarose gel electrophoresis. The genotyping was repeated in 10% of the samples, and the genotyping rate was 100%. Height and weight were measured and BMI calculated. According to BMI, the experimental group was further divided into the obese group (n = 137, BMI > 25 kg/m<sup>2</sup>) and the normal body mass group (n = 79, BMI < 25 kgm<sup>2</sup>). Normal control group: BMI < 25 kgm<sup>2</sup>: FBG < 6.1 mmol/L and 2 h BG < 7.8 mmol/L after meal. Finally, SPSS18.0 software was used for analysis. <strong>Results:</strong> FBG, 2 h BG, FIN and Lg homa-ir showed significant differences between the control group and the T2DM groups (<em>P</em> < 0.01), while no statistical difference was found between the other parameters (<em>P</em> > 0.05). There was a significant difference in genotype frequency between the control group and the experimental group (<em>χ</em><sup>2</sup> = 17.382, <em>P</em> < 0.001), but no significant difference in allele frequency between the control group and the T2DM group (<em>P</em> > 0.05). Genotype frequency at BMI level was significantly different between the control group and the T2DM group (<em>χ</em><sup>2</sup> = 20.427, <em>P</em> = 0.001), but there was no significant difference in allele frequency distribution (<em>P</em> > 0.05). The TT type and TC + CC type were significantly different between the T2DM group and the control group (<em>χ</em><sup>2</sup> = 78.154, <em>P</em> = 0.006) and the T2DM obesity group and the control group (<em>χ</em><sup>2</sup> = 7.247, <em>P</em> = 0.009), but there was no significant difference between the T2DM normal body mass group and the control group (<em>P</em> > 0.05). In addition, there was no significant difference between TC type + TT type and CC type between the T2DM group and the control group and the T2DM obesity group and the control group (<em>P</em> > 0.05). <strong>Conclusion:</strong> There were significant differences in the genotype frequency and recessive inheritance pattern (TT/CC + TC) of rs7903146, suggesting that this SNP may be associated with the incidence of T2DM in obesity and insulin resistance.
基金support of the National Key Research and Development Program of China(Nos.2017YFE0300501,2017YFE0300500)Institute of Energy,Hefei Comprehensive National Science Center(Nos.21KZS202,19KZS205)+3 种基金University Synergy Innovation Program of Anhui Province(Nos.GXXT-2021-014,GXXT-2021-029)National Natural Science Foundation of China(No.11905143)the Fundamental Research Funds for the Central Universities of China(No.JZ2022HGTB0302)supported in part by the Users with Excellence Program of Hefei Science Center CAS(No.2020HSC-UE008)。
文摘Compact torus(CT)injection is a highly promising technique for the central fueling of future reactor-grade fusion devices since it features extremely high injection velocity and relatively high plasma mass.Recently,a CT injector for the EAST tokamak,EAST-CTI,was developed and platform-tested.In the first round of experiments conducted with low parameter settings,the maximum velocity and mass of the CT plasma were 150 km·s^(-1)and 90μg,respectively.However,the parameters obtained by EAST-CTI were still very low and were far from the requirements of a device such as EAST that has a strong magnetic field.In future,we plan to solve the spark problem that EAST-CTI currently encounters(that mainly hinders the further development of experiments)through engineering methods,and use greater power to obtain a more stable and suitable CT plasma for EAST.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2017YFE0301700 and 2017YFE0301701)National Natural Science Foundation of China(Nos.11875255,11635008,11375188 and 11975231)。
文摘A compact torus injection system,KTX-CTI,has been developed for the planned injection experiments on the Keda Torus e Xperiment(KTX)reversed field pinch(RFP)device to investigate the physics and engineering issues associated with interaction between a compact torus(CT)and RFP.The key interests include fueling directly into the reactor center,confinement improvement,and the injection of momentum and helicity into the RFP discharges.The CT velocity and mass have been measured using a multichannel optical fiber interferometer,and for the first time the time evolution of the CT density profile during CT propagation is obtained.The effects of discharge parameters on the number of injected particles,CT velocity and CT density have been characterized:the maximum hydrogen CT plasma mass,m,CTis 50μg,corresponding to 30%of the mass in a typical KTX plasma;the CT velocity exceeds 120 km s-1.It is observed for the first time that multiple CTs can be produced and emitted during a very short period(<100μs)in one discharge,which is significant for the future study of repetitive CT injection,even with an ultra-high frequency.
基金This work was supported by the NSFC innovation group project(Grant No.11921006)the National Grand Instrument Project(Grant No.2019YFF01014402)+1 种基金the United States Department of Energy(Grant No.DE-FG03-93ER40773)the NNSA(Grant No.DENA0003841)(CENTAUR).The PIC simulations were carried out using the High-Performance Computing Platform of Peking University。
文摘In this work,the high-energy-density plasmas(HEDP)evolved from joule-class-femtosecond-laser-irradiated nanowire-array(NWA)targets were numerically and experimentally studied.The results of particle-in-cell simulations indicate that ions accelerated in the sheath field around the surfaces of the nanowires are eventually confined in a plasma,contributing most to the high energy densities.The protons emitted from the front surfaces of the NWA targets provide rich information about the interactions that occur.We give the electron and ion energy densities for broad target parameter ranges.The ion energy densities from NWA targets were found to be an order of magnitude higher than those from planar targets,and the volume of the HEDP was several-fold greater.At optimal target parameters,8%of the laser energy can be converted to confined protons,and this results in ion energy densities at the GJ/cm^(3) level.In the experiments,the measured energy of the emitted protons reached 4 MeV,and the changes in energy with the NWA’s parameters were found to fit the simulation results well.Experimental measurements of neutrons from 2H(d,n)3He fusion with a yield of(24±18)×10^(6)/J from deuterated polyethylene NWA targets also confirmed these results.
基金supported by the National Key Research and Development Program of China(Nos.2017YFE0300500,2017YFE0300501)the Institute of Energy,Hefei Comprehensive National Science Center(Nos.19KZS205 and 21KZS202)+3 种基金the International Partnership Program of Chinese Academy of Sciences(No.Y16YZ17271)National Natural Science Foundation of China(Nos.11905143 and 12105088)Users with Excellence Program of Hefei Science Center CAS(No.2020HSC-UE008)The University Synergy Innovation Program of Anhui Province(Nos.GXXT-2021-014,GXXT2021-029)。
文摘Compact torus(CT)injection is one of the most promising methods for the central fuelling of next-generation reactor-grade fusion devices due to its high density,high velocity,and selfcontained magnetised structure.A newly compact torus injector(CTI)device in Keda Torus e Xperiment(KTX),named KTX-CTI,was successfully developed and tested at the University of Science and Technology in China.In this study,first,we briefly introduce the basic principles and structure of KTX-CTI,and then,present an accurate circuit model that relies on nonlinear regression analysis(NRA)for studying the current waveform of the formation region.The current waveform,displacement,and velocity of CT plasma in the acceleration region are calculated using this NRA-based one-dimensional point model.The model results were in good agreement with the experiments.The next-step upgrading reference scheme of the KTX-CTI device is preliminarily investigated using this NRA-based point model.This research can provide insights for the development of experiments and future upgrades of the device.
基金supported by National Natural Science Foundation of China(Nos.11975087 and 41674165)the National Key Research and Development Program of China(Nos.2017YFE0300501 and 2018YFE030310)。
文摘Tritium self-sufficiency in future deuterium–tritium fusion reactors is a crucial challenge.As an engineering test reactor,the China Fusion Engineering Test Reactor requires a burning fraction of 3%for the goal to test the accessibility to the future fusion plant.To self-consistently simulate burning plasmas with profile changes in pellet injection scenarios and to estimate the corresponding burning fraction,a one-dimensional multi-species radial transport model is developed in the BOUT++framework.Several pellet-fueling scenarios are then tested in the model.The results show that the increased fueling depth improves the burning fraction by particle confinement improvement and fusion power increase.Nevertheless,by increasing the depth,the pellet cooling-down may significantly lower the temperature in the core region.Taking the density perturbation into consideration,the reasonable parameters of the fueling scenario in these simulations are estimated as pellet radius r_(p)=3 mm,injection rate=4 Hz,and pellet injection velocity=1000–2000 m s^(-1) without drift or 450 m s^(-1) with high-field-side drift.
基金the EAST team for their support during the experimentssupported by the National Natural Science Foundation of China with Grant Nos.10990210,10990211,11375188,11105144,and 11375053+1 种基金the National Magnetic Confinement Fusion Science Program of China under Contracts Nos.2013GB106002, 2013GB106003the Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology with Grant No.2014FXCX003
文摘The essential role of zonal flow in the L-H transition and the suppression of turbulence have been studied with a long range correlation technique using Langmuir probe arrays in EAST tokamak.Two toroidally localized probe arrays are used to measure the zonal flow during L-H transition and H-L back transition.The energy ratio of the low frequency zonal flow to the total drift wave turbulence is calculated.During ELM-free H mode,the energy ratio is higher than that in L mode,which reveals the important role of zonal flows in regulating turbulence amplitude in L-H transition.
基金supported by the National Key Research and Deve-lopment Program of China(Grant Nos.2024YFE03120000 a and 2024YFE03130000)Institute of Energy,Hefei Comprehensive National Science Center,China(Nos.21KZS202 and 19KZS205).
文摘1 Overview of the EAST device The Experimental Advanced Superconducting Tokamak(EAST),a national key scientific project of the“Ninth Five-Year Plan,”is the world’s first fully superconducting non-circular cross-section tokamak fusion experiment device designed and developed independently by China.The principle of tokamak nuclear fusion is creating a toroidal magnetic cage through magnetic fields.This approach uses the tendency of charged particles to spiral along magnetic field lines,thereby confining high-temperature and high-density deuterium-tritium plasmas to increase the probability of nuclear reactions and achieve fusion energy output.
文摘To meet the demands of laser-ion acceleration at a high repetition rate,we have developed a comprehensive diagnostic system for real-time and in situ monitoring of liquid sheet targets(LSTs).The spatially resolved rapid characterizations of an LST’s thickness,flatness,tilt angle and position are fulfilled by different subsystems with high accuracy.With the help of the diagnostic system,we reveal the dependence of thickness distribution on collision parameters and report the 238-nm liquid sheet generated by the collision of two liquid jets.Control methods for the flatness and tilt angle of LSTs have also been provided,which are essential for applications of laser-driven ion acceleration and others.
基金National Grand Instrument Project(No.2019YFF01014402)NSFC innovation group project(No.11921006)National Natural Science Foundation of China(Nos.11775010,11535001,and 61631001).
文摘Carbon nanotube foams(CNFs)have been successfully used as near-critical-density targets in the laser-driven acceleration of high-energy ions and electrons.Here we report the recent advances in the fabrication technique of such targets.With the further developed floating catalyst chemical vapor deposition(FCCVD)method,large-area(>25 cm^(2))and highly uniform CNFs are successfully deposited on nanometer-thin metal or plastic foils as double-layer targets.The density and thickness of the CNF can be controlled in the range of 1−13 mg/cm^(3)and 10−200µm,respectively,by varying the synthesis parameters.The dependence of the target properties on the synthesis parameters and the details of the target characterization methods are presented for the first time.
基金the NSFC Innovation Group Project(No.11921006)the National Grand Instrument Project(No.2019YFF01014402)+1 种基金the Guangdong Provincial Science and Technology Plan Project(No.2021B0909050006)the National Science Fund for Distinguished Young Scholars(No.12225501).
文摘Post-acceleration of protons in helical coil targets driven by intense,ultrashort laser pulses can enhance ion energy by utilizing the transient current from the targets’self-discharge.The acceleration length of protons can exceed a few millimeters,and the acceleration gradient is of the order of GeV/m.How to ensure the synchronization between the accelerating electric field and the protons is a crucial problem for efficient post-acceleration.In this paper,we study how the electric field mismatch induced by current dispersion affects the synchronous acceleration of protons.We propose a scheme using a two-stage helical coil to control the current dispersion.With optimized parameters,the energy gain of protons is increased by four times.Proton energy is expected to reach 45 MeV using a hundreds-of-terawatts laser,or more than 100 MeV using a petawatt laser,by controlling the current dispersion.