Cleanliness control of advanced steels is of vital importance for quality control of the products.In order to understand and control the inclusion removal during refining process in molten steel,its motion behaviors a...Cleanliness control of advanced steels is of vital importance for quality control of the products.In order to understand and control the inclusion removal during refining process in molten steel,its motion behaviors at the multiple steel/gas/slag interfaces have attracted the attention much of metallurgical community.The recent development of the agglomeration of non-metallic inclusions at the steel/Ar and steel/slag interfaces has been summarized,and both the experimental as well as theoretical works have been surveyed.In terms of in situ observation of high-temperature interfacial phenomena in the molten steel,researchers utilized high-temperature confocal laser scanning microscopy to observe the movement of more types of inclusions at the interface,i.e.,the investigated inclusion is no longer limited to Al_(2)O_(3)-based inclusions but moves forward to rare earth oxides,MgO-based oxides,etc.In terms of theoretical models,especially the model of inclusions at the steel/slag interface,the recent development has overcome the limitations of the assumptions of Kralchevsky-Paunov model and verified the possible errors caused by the model assumptions by combining the water model and the physical model.Last but not least,the future work in this topic has been suggested,which could be in combination of thermal physical properties of steels and slag,as well as utilize the artificial intelligence-based methodology to implement a comprehensive inclusion motion behaviors during a comprehensive metallurgical process.展开更多
High-temperature confocal laser scanning microscopy(HT-CLSM)is a robust characterization tool which can provide in situ real-time studies of materials processing.This facility has been applied in investigating interfa...High-temperature confocal laser scanning microscopy(HT-CLSM)is a robust characterization tool which can provide in situ real-time studies of materials processing.This facility has been applied in investigating interfacial phenomena in ironmaking and steelmaking as well as phase transformations during heat treatment of metallic materials.The pioneering work on the application of HTCLSM dates back to twenty-five years ago,to directly observe the crystallization of undercooled steel melt.展开更多
基金the National Natural Science Foundation of China(Grant No.52074179)for the financial supportNational Key Research and Development Program of China(2024YFB3713705)is also acknowledged.
文摘Cleanliness control of advanced steels is of vital importance for quality control of the products.In order to understand and control the inclusion removal during refining process in molten steel,its motion behaviors at the multiple steel/gas/slag interfaces have attracted the attention much of metallurgical community.The recent development of the agglomeration of non-metallic inclusions at the steel/Ar and steel/slag interfaces has been summarized,and both the experimental as well as theoretical works have been surveyed.In terms of in situ observation of high-temperature interfacial phenomena in the molten steel,researchers utilized high-temperature confocal laser scanning microscopy to observe the movement of more types of inclusions at the interface,i.e.,the investigated inclusion is no longer limited to Al_(2)O_(3)-based inclusions but moves forward to rare earth oxides,MgO-based oxides,etc.In terms of theoretical models,especially the model of inclusions at the steel/slag interface,the recent development has overcome the limitations of the assumptions of Kralchevsky-Paunov model and verified the possible errors caused by the model assumptions by combining the water model and the physical model.Last but not least,the future work in this topic has been suggested,which could be in combination of thermal physical properties of steels and slag,as well as utilize the artificial intelligence-based methodology to implement a comprehensive inclusion motion behaviors during a comprehensive metallurgical process.
文摘High-temperature confocal laser scanning microscopy(HT-CLSM)is a robust characterization tool which can provide in situ real-time studies of materials processing.This facility has been applied in investigating interfacial phenomena in ironmaking and steelmaking as well as phase transformations during heat treatment of metallic materials.The pioneering work on the application of HTCLSM dates back to twenty-five years ago,to directly observe the crystallization of undercooled steel melt.