Mining activities are often associated with significant environmental degradation,particularly due to the accumulation of mine tailings(MTs).These waste materials are frequently stored in dams or open ponds without ad...Mining activities are often associated with significant environmental degradation,particularly due to the accumulation of mine tailings(MTs).These waste materials are frequently stored in dams or open ponds without adequate treatment,posing serious risk of heavy metals(HMs)contamination to surrounding ecosystems.Given these challenges,restoration of MTs to mitigate their negative impacts has become highly important.This study attempts to compile different types of MTs,their characteristics,and associated issues such as acid mine drainage(AMD)and HMs contamination,along with other environmental impacts.It also explores the fundamentals of phytoremediation,highlighting key processes,recent advancements,benefits,limitations,and strategies for post-harvest management.The findings indicate that MTs are a major source of HM pollution and contribute significantly to environmental deterioration.Phytoremediation has emerged as a promising,cost-effective,and eco-friendly solution for MT restoration.In addition to mitigating contamination,phytoremediation enhances soil quality,prevents erosion,reduces HM leaching into groundwater,and improves the visual appeal of degraded sites.Research suggests that revegetating MT-contaminated soils with specific plant species can effectively remediate these areas,reducing HM leaching risks while improving soil properties.This review serves as a valuable resource for researchers working on MT restoration,offering insights into the latest advancements in phytoremediation technology and its potential to address the environmental challenges posed by MTs.展开更多
Zn0.90Ni0.10O nanoparticles have been synthesized by single-bath two-electrode electrodeposition at constant voltage. X-ray diffraction, UV vis and photoluminescence studies reveal that a single-phase polycrystalline ...Zn0.90Ni0.10O nanoparticles have been synthesized by single-bath two-electrode electrodeposition at constant voltage. X-ray diffraction, UV vis and photoluminescence studies reveal that a single-phase polycrystalline hcp wurtzite crystal structure of ZnO is evolved. The material consists of a large number of defects such as oxygen vacancy (Ov) and zinc interstitial (Zi). The magnetization study reveals that the sample exhibits room-temperature global ferromagnetism and the ferromagnetic ordering seems to be defect induced via bound magnetic polaron mechanism, and double exchange is also expected to have played role. Interesting optoelectronic properties have been found in the synthesized sample and the material seems to be a potential candidate to be used as a UV sensor. Such a transition metal doped ZnO based dilute magnetic semiconducting system exhibiting room-temperature ferromagnetism is likely to be first of its kind in the sense that such materials have not yet been reported to be synthesized by the simple method of electrodeposition to the best of our knowledge on the basis of ample literature review.展开更多
文摘Mining activities are often associated with significant environmental degradation,particularly due to the accumulation of mine tailings(MTs).These waste materials are frequently stored in dams or open ponds without adequate treatment,posing serious risk of heavy metals(HMs)contamination to surrounding ecosystems.Given these challenges,restoration of MTs to mitigate their negative impacts has become highly important.This study attempts to compile different types of MTs,their characteristics,and associated issues such as acid mine drainage(AMD)and HMs contamination,along with other environmental impacts.It also explores the fundamentals of phytoremediation,highlighting key processes,recent advancements,benefits,limitations,and strategies for post-harvest management.The findings indicate that MTs are a major source of HM pollution and contribute significantly to environmental deterioration.Phytoremediation has emerged as a promising,cost-effective,and eco-friendly solution for MT restoration.In addition to mitigating contamination,phytoremediation enhances soil quality,prevents erosion,reduces HM leaching into groundwater,and improves the visual appeal of degraded sites.Research suggests that revegetating MT-contaminated soils with specific plant species can effectively remediate these areas,reducing HM leaching risks while improving soil properties.This review serves as a valuable resource for researchers working on MT restoration,offering insights into the latest advancements in phytoremediation technology and its potential to address the environmental challenges posed by MTs.
基金Project supported by the UGC-DAE,Consortium for Scientific Research,Indore through its CRS project bearing No.CSR-IC/MSRSR-12/CRS-220/2017-18/1301.
文摘Zn0.90Ni0.10O nanoparticles have been synthesized by single-bath two-electrode electrodeposition at constant voltage. X-ray diffraction, UV vis and photoluminescence studies reveal that a single-phase polycrystalline hcp wurtzite crystal structure of ZnO is evolved. The material consists of a large number of defects such as oxygen vacancy (Ov) and zinc interstitial (Zi). The magnetization study reveals that the sample exhibits room-temperature global ferromagnetism and the ferromagnetic ordering seems to be defect induced via bound magnetic polaron mechanism, and double exchange is also expected to have played role. Interesting optoelectronic properties have been found in the synthesized sample and the material seems to be a potential candidate to be used as a UV sensor. Such a transition metal doped ZnO based dilute magnetic semiconducting system exhibiting room-temperature ferromagnetism is likely to be first of its kind in the sense that such materials have not yet been reported to be synthesized by the simple method of electrodeposition to the best of our knowledge on the basis of ample literature review.