期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Chebyshev Polynomial-Based Analytic Solution Algorithm with Efficiency, Stability and Sensitivity for Classic Vibrational Constant Coefficient Homogeneous IVPs with Derivative Orders n, n-1, n-2
1
作者 david p. stapleton 《American Journal of Computational Mathematics》 2022年第4期331-340,共10页
The Chebyshev polynomials are harnessed as functions of the one parameter of the nondimensionalized differential equation for trinomial homogeneous linear differential equations of arbitrary order n that have constant... The Chebyshev polynomials are harnessed as functions of the one parameter of the nondimensionalized differential equation for trinomial homogeneous linear differential equations of arbitrary order n that have constant coefficients and exhibit vibration. The use of the Chebyshev polynomials allows calculation of the analytic solutions for arbitrary n in terms of the orthogonal Chebyshev polynomials to provide a more stable solution form and natural sensitivity analysis in terms of one parameter and the initial conditions in 6n + 7 arithmetic operations and one square root. 展开更多
关键词 Differential Equation STABILITY Sensitivity Analysis Chebyshev Polynomials Coefficient Formula
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部