A real-time ion spectrometer mainly based on a high-resolution Thomson parabola and a plastic scintillator is designed and developed.The spectrometer is calibrated by protons from an electrostatic accelerator.The feas...A real-time ion spectrometer mainly based on a high-resolution Thomson parabola and a plastic scintillator is designed and developed.The spectrometer is calibrated by protons from an electrostatic accelerator.The feasibility and reliability of the diagnostics are demonstrated in laser-driven ion acceleration experiments performed on the XL-II laser facility.The proton spectrum extrapolated from the scintillator data is in excellent agreement with the CR39 spectrum in terms of beam temperature and the cutoff energy.This real-time spectrometer allows an online measurement of the ion spectra in single shot,which enables efficient and statistical studies and applications in high-repetition-rate laser acceleration experiments.展开更多
The design of ellipsoidal plasma mirrors(EPMs)for the PEARL laser facility is presented.The EPMs achieve a magnification of 0.32 in focal spot size,and the corresponding increase in focused intensity is expected to be...The design of ellipsoidal plasma mirrors(EPMs)for the PEARL laser facility is presented.The EPMs achieve a magnification of 0.32 in focal spot size,and the corresponding increase in focused intensity is expected to be about 8.Designing and implementing such focusing optics for short-pulse(<100 fs)systems paves the way for their use in future high-power facilities,where they can be used to achieve intensities beyond 1023W/cm^(2).A retro-imaging-based target alignment system is also described,which is used to align solid targets at the output of the ellispoidal mirrors(with a numerical aperture of 0.75 in this case).展开更多
In the 2015 review paper‘Petawatt Class Lasers Worldwide’a comprehensive overview of the current status of highpower facilities of>200 TW was presented.This was largely based on facility specifications,with some ...In the 2015 review paper‘Petawatt Class Lasers Worldwide’a comprehensive overview of the current status of highpower facilities of>200 TW was presented.This was largely based on facility specifications,with some description of their uses,for instance in fundamental ultra-high-intensity interactions,secondary source generation,and inertial confinement fusion(ICF).With the 2018 Nobel Prize in Physics being awarded to Professors Donna Strickland and Gerard Mourou for the development of the technique of chirped pulse amplification(CPA),which made these lasers possible,we celebrate by providing a comprehensive update of the current status of ultra-high-power lasers and demonstrate how the technology has developed.We are now in the era of multi-petawatt facilities coming online,with 100 PW lasers being proposed and even under construction.In addition to this there is a pull towards development of industrial and multi-disciplinary applications,which demands much higher repetition rates,delivering high-average powers with higher efficiencies and the use of alternative wavelengths:mid-IR facilities.So apart from a comprehensive update of the current global status,we want to look at what technologies are to be deployed to get to these new regimes,and some of the critical issues facing their development.展开更多
The use of ultra-high intensity laser beams to achieve extreme material states in the laboratory has become almost routine with the development of the petawatt laser. Petawatt class lasers have been constructed for sp...The use of ultra-high intensity laser beams to achieve extreme material states in the laboratory has become almost routine with the development of the petawatt laser. Petawatt class lasers have been constructed for specific research activities,including particle acceleration, inertial confinement fusion and radiation therapy, and for secondary source generation(x-rays, electrons, protons, neutrons and ions). They are also now routinely coupled, and synchronized, to other large scale facilities including megajoule scale lasers, ion and electron accelerators, x-ray sources and z-pinches. The authors of this paper have tried to compile a comprehensive overview of the current status of petawatt class lasers worldwide.The definition of ‘petawatt class' in this context is a laser that delivers >200 TW.展开更多
This paper provides an up-to-date review of the problems related to the generation,detection and mitigation of strong electromagnetic pulses created in the interaction of high-power,high-energy laser pulses with diffe...This paper provides an up-to-date review of the problems related to the generation,detection and mitigation of strong electromagnetic pulses created in the interaction of high-power,high-energy laser pulses with different types of solid targets.It includes new experimental data obtained independently at several international laboratories.The mechanisms of electromagnetic field generation are analyzed and considered as a function of the intensity and the spectral range of emissions they produce.The major emphasis is put on the GHz frequency domain,which is the most damaging for electronics and may have important applications.The physics of electromagnetic emissions in other spectral domains,in particular THz and MHz,is also discussed.The theoretical models and numerical simulations are compared with the results of experimental measurements,with special attention to the methodology of measurements and complementary diagnostics.Understanding the underlying physical processes is the basis for developing techniques to mitigate the electromagnetic threat and to harness electromagnetic emissions,which may have promising applications.展开更多
The first demonstration of laser action in ruby was made in 1960 by T.H.Maiman of Hughes Research Laboratories,USA.Many laboratories worldwide began the search for lasers using different materials,operating at differe...The first demonstration of laser action in ruby was made in 1960 by T.H.Maiman of Hughes Research Laboratories,USA.Many laboratories worldwide began the search for lasers using different materials,operating at different wavelengths.In the UK,academia,industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications.This historical review looks at the contribution the UK has made to the advancement of the technology,the development of systems and components and their exploitation over the last 60 years.展开更多
There are several petawatt-scale laser facilities around the world and the fidelity of the pulses to target is critical in achieving the highest focused intensities and the highest possible contrast. The United Kingdo...There are several petawatt-scale laser facilities around the world and the fidelity of the pulses to target is critical in achieving the highest focused intensities and the highest possible contrast. The United Kingdom has three such laser facilities which are currently open for access to the academic community: Orion at AWE, Aldermaston and Vulcan & Astra-Gemini at the Central Laser Facility(CLF), STFC(Science and Technology Facilities Council)Rutherford Appleton Laboratory(RAL). These facilities represent the two main classes of petawatt facilities: the mixed OPCPA/Nd:glass high-energy systems of Orion and Vulcan and the ultra-short-pulse Ti:Sapphire system of AstraGemini. Many of the techniques used to enhance and control the pulse generation and delivery to target have been pioneered on these facilities. In this paper, we present the system designs which make this possible and discuss the contrast enhancement schemes that have been implemented.展开更多
The collective response of electrons in an ultrathin foil target irradiated by an ultraintense(~6×10^(20)W cm^(-2)) laser pulse is investigated experimentally and via 3D particle-in-cell simulations. It is shown ...The collective response of electrons in an ultrathin foil target irradiated by an ultraintense(~6×10^(20)W cm^(-2)) laser pulse is investigated experimentally and via 3D particle-in-cell simulations. It is shown that if the target is sufficiently thin that the laser induces significant radiation pressure, but not thin enough to become relativistically transparent to the laser light, the resulting relativistic electron beam is elliptical, with the major axis of the ellipse directed along the laser polarization axis. When the target thickness is decreased such that it becomes relativistically transparent early in the interaction with the laser pulse, diffraction of the transmitted laser light occurs through a so called ‘relativistic plasma aperture', inducing structure in the spatial-intensity profile of the beam of energetic electrons. It is shown that the electron beam profile can be modified by variation of the target thickness and degree of ellipticity in the laser polarization.展开更多
基金by the National Natural Science Foundation of China under Grant Nos 10905092(Young Scientists Fund),10925421,10974250,and 10935002the National Basic Research Program of China under Grant No 2007CB815102the Fundamental Research Funds for the Central Universities.
文摘A real-time ion spectrometer mainly based on a high-resolution Thomson parabola and a plastic scintillator is designed and developed.The spectrometer is calibrated by protons from an electrostatic accelerator.The feasibility and reliability of the diagnostics are demonstrated in laser-driven ion acceleration experiments performed on the XL-II laser facility.The proton spectrum extrapolated from the scintillator data is in excellent agreement with the CR39 spectrum in terms of beam temperature and the cutoff energy.This real-time spectrometer allows an online measurement of the ion spectra in single shot,which enables efficient and statistical studies and applications in high-repetition-rate laser acceleration experiments.
基金The results of Project LQ1606 were obtained with the financial support of the Ministry of Education,Youths and Sports as part of targeted support from the National Programme of Sustainability II.This research was also sponsored by the Czech Science Foundation(Project No.18-09560S)by the project High Field Initiative(CZ.02.1.01/0.0/0.0/15_003/0000449)from the European Regional Development Fund(HIFI),by the project on Advanced Research Using High Intensity Laser Produced Photons and Particles(No.CZ.02.1.01/0.0/0.0/16019/0000789)from the European Regional Development Fund(ADONIS)+1 种基金by theMinistry of Education and Science of the Russian Federation under Contract No.14.Z50.31.0007.The work was also supported by the Ministry of Education and Science of the Russian Federation(FTP Grant#14.607.21.0196,Project ID:RFMEFI60717X0196)The work of JIHT RAS team on X-ray measurements and analysis was done with financial support fromthe Russian Science Foundation(Grant#14-50-00124).
文摘The design of ellipsoidal plasma mirrors(EPMs)for the PEARL laser facility is presented.The EPMs achieve a magnification of 0.32 in focal spot size,and the corresponding increase in focused intensity is expected to be about 8.Designing and implementing such focusing optics for short-pulse(<100 fs)systems paves the way for their use in future high-power facilities,where they can be used to achieve intensities beyond 1023W/cm^(2).A retro-imaging-based target alignment system is also described,which is used to align solid targets at the output of the ellispoidal mirrors(with a numerical aperture of 0.75 in this case).
文摘In the 2015 review paper‘Petawatt Class Lasers Worldwide’a comprehensive overview of the current status of highpower facilities of>200 TW was presented.This was largely based on facility specifications,with some description of their uses,for instance in fundamental ultra-high-intensity interactions,secondary source generation,and inertial confinement fusion(ICF).With the 2018 Nobel Prize in Physics being awarded to Professors Donna Strickland and Gerard Mourou for the development of the technique of chirped pulse amplification(CPA),which made these lasers possible,we celebrate by providing a comprehensive update of the current status of ultra-high-power lasers and demonstrate how the technology has developed.We are now in the era of multi-petawatt facilities coming online,with 100 PW lasers being proposed and even under construction.In addition to this there is a pull towards development of industrial and multi-disciplinary applications,which demands much higher repetition rates,delivering high-average powers with higher efficiencies and the use of alternative wavelengths:mid-IR facilities.So apart from a comprehensive update of the current global status,we want to look at what technologies are to be deployed to get to these new regimes,and some of the critical issues facing their development.
文摘The use of ultra-high intensity laser beams to achieve extreme material states in the laboratory has become almost routine with the development of the petawatt laser. Petawatt class lasers have been constructed for specific research activities,including particle acceleration, inertial confinement fusion and radiation therapy, and for secondary source generation(x-rays, electrons, protons, neutrons and ions). They are also now routinely coupled, and synchronized, to other large scale facilities including megajoule scale lasers, ion and electron accelerators, x-ray sources and z-pinches. The authors of this paper have tried to compile a comprehensive overview of the current status of petawatt class lasers worldwide.The definition of ‘petawatt class' in this context is a laser that delivers >200 TW.
基金the framework of the EUROfusion Consortium and funded from the Euratom research and training programme 2014–2018 and 2019– 2020 under grant agreement No. 633053the ELI Beamlines Projects LQ1606 and 19-02545S with financial support from the Czech Science Foundation and the Ministry of Education, Youth and Sports of the Czech Republic+6 种基金support from the European Regional Development Fund, the project ELITAS CZ.02.1.01/0.0/0.0/16 013/0001793the National Programme of ‘Sustainability Ⅱ’ and ELI phase 2 CZ.02.1.01/0.0/0.0/15008/0000162The PETAL project was designed and built by the CEA under the financial auspices of the Region Nouvelle Aquitaine, the French Government and the European Unionsupported by EPSRC grants EP/K022415/1 and EP/R006202supported by the European Cluster of Advanced Laser Light Sources, EUCALL, which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 654220funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 654148 Laserlab-Europethe use of the EPOCH PIC code (developed under EPSRC grant EP/G054940/1).
文摘This paper provides an up-to-date review of the problems related to the generation,detection and mitigation of strong electromagnetic pulses created in the interaction of high-power,high-energy laser pulses with different types of solid targets.It includes new experimental data obtained independently at several international laboratories.The mechanisms of electromagnetic field generation are analyzed and considered as a function of the intensity and the spectral range of emissions they produce.The major emphasis is put on the GHz frequency domain,which is the most damaging for electronics and may have important applications.The physics of electromagnetic emissions in other spectral domains,in particular THz and MHz,is also discussed.The theoretical models and numerical simulations are compared with the results of experimental measurements,with special attention to the methodology of measurements and complementary diagnostics.Understanding the underlying physical processes is the basis for developing techniques to mitigate the electromagnetic threat and to harness electromagnetic emissions,which may have promising applications.
文摘The first demonstration of laser action in ruby was made in 1960 by T.H.Maiman of Hughes Research Laboratories,USA.Many laboratories worldwide began the search for lasers using different materials,operating at different wavelengths.In the UK,academia,industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications.This historical review looks at the contribution the UK has made to the advancement of the technology,the development of systems and components and their exploitation over the last 60 years.
文摘There are several petawatt-scale laser facilities around the world and the fidelity of the pulses to target is critical in achieving the highest focused intensities and the highest possible contrast. The United Kingdom has three such laser facilities which are currently open for access to the academic community: Orion at AWE, Aldermaston and Vulcan & Astra-Gemini at the Central Laser Facility(CLF), STFC(Science and Technology Facilities Council)Rutherford Appleton Laboratory(RAL). These facilities represent the two main classes of petawatt facilities: the mixed OPCPA/Nd:glass high-energy systems of Orion and Vulcan and the ultra-short-pulse Ti:Sapphire system of AstraGemini. Many of the techniques used to enhance and control the pulse generation and delivery to target have been pioneered on these facilities. In this paper, we present the system designs which make this possible and discuss the contrast enhancement schemes that have been implemented.
基金supported by EPSRC (grants:EP/J003832/1,EP/M018091/1,EP/L001357/1,EP/K022415/1 and EP/L000237/1)EPSRC grant EP/G054940/1+2 种基金STFC (grant number ST/K502340/1)the US Air Force Office of Scientific Research (grant:FA8655-13-1-3008)the European Unions Horizon 2020 research and innovation programme (grant agreement No 654148 Laserlab-Europe)
文摘The collective response of electrons in an ultrathin foil target irradiated by an ultraintense(~6×10^(20)W cm^(-2)) laser pulse is investigated experimentally and via 3D particle-in-cell simulations. It is shown that if the target is sufficiently thin that the laser induces significant radiation pressure, but not thin enough to become relativistically transparent to the laser light, the resulting relativistic electron beam is elliptical, with the major axis of the ellipse directed along the laser polarization axis. When the target thickness is decreased such that it becomes relativistically transparent early in the interaction with the laser pulse, diffraction of the transmitted laser light occurs through a so called ‘relativistic plasma aperture', inducing structure in the spatial-intensity profile of the beam of energetic electrons. It is shown that the electron beam profile can be modified by variation of the target thickness and degree of ellipticity in the laser polarization.