Breast cancer’s heterogeneous progression demands innovative tools for accurate prediction.We present a hybrid framework that integrates machine learning(ML)and fractional-order dynamics to predict tumor growth acros...Breast cancer’s heterogeneous progression demands innovative tools for accurate prediction.We present a hybrid framework that integrates machine learning(ML)and fractional-order dynamics to predict tumor growth across diagnostic and temporal scales.On the Wisconsin Diagnostic Breast Cancer dataset,seven ML algorithms were evaluated,with deep neural networks(DNNs)achieving the highest accuracy(97.72%).Key morphological features(area,radius,texture,and concavity)were identified as top malignancy predictors,aligning with clinical intuition.Beyond static classification,we developed a fractional-order dynamical model using Caputo derivatives to capture memory-driven tumor progression.The model revealed clinically interpretable patterns:lower fractional orders correlated with prolonged aggressive growth,while higher orders indicated rapid stabilization,mimicking indolent subtypes.Theoretical analyses were rigorously proven,and numerical simulations closely fit clinical data.The framework’s clinical utility is demonstrated through an interactive graphics user interface(GUI)that integrates real-time risk assessment with growth trajectory simulations.展开更多
文摘Breast cancer’s heterogeneous progression demands innovative tools for accurate prediction.We present a hybrid framework that integrates machine learning(ML)and fractional-order dynamics to predict tumor growth across diagnostic and temporal scales.On the Wisconsin Diagnostic Breast Cancer dataset,seven ML algorithms were evaluated,with deep neural networks(DNNs)achieving the highest accuracy(97.72%).Key morphological features(area,radius,texture,and concavity)were identified as top malignancy predictors,aligning with clinical intuition.Beyond static classification,we developed a fractional-order dynamical model using Caputo derivatives to capture memory-driven tumor progression.The model revealed clinically interpretable patterns:lower fractional orders correlated with prolonged aggressive growth,while higher orders indicated rapid stabilization,mimicking indolent subtypes.Theoretical analyses were rigorously proven,and numerical simulations closely fit clinical data.The framework’s clinical utility is demonstrated through an interactive graphics user interface(GUI)that integrates real-time risk assessment with growth trajectory simulations.