期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Author Correction:Benchmarking materials property prediction methods:the Matbench test set and Automatminer reference algorithm 被引量:11
1
作者 Alexander Dunn Qi Wang +2 位作者 Alex Ganose daniel dopp Anubhav Jain 《npj Computational Materials》 SCIE EI CSCD 2020年第1期368-368,共1页
The original version of the Article contained an error in Fig.3,in which the label at the top of the first column of Fig.3 originally incorrectly read‘Yield Strength(GPa)’,rather than the correct‘Yield Strength(MPa... The original version of the Article contained an error in Fig.3,in which the label at the top of the first column of Fig.3 originally incorrectly read‘Yield Strength(GPa)’,rather than the correct‘Yield Strength(MPa)’.This has been corrected in both the PDF and HTML versions of the Article. 展开更多
关键词 HTML PROPERTY prediction
原文传递
Benchmarking materials property prediction methods:the Matbench test set and Automatminer reference algorithm 被引量:7
2
作者 Alexander Dunn Qi Wang +2 位作者 Alex Ganose daniel dopp Anubhav Jain 《npj Computational Materials》 SCIE EI CSCD 2020年第1期507-516,共10页
We present a benchmark test suite and an automated machine learning procedure for evaluating supervised machine learning(ML)models for predicting properties of inorganic bulk materials.The test suite,Matbench,is a set... We present a benchmark test suite and an automated machine learning procedure for evaluating supervised machine learning(ML)models for predicting properties of inorganic bulk materials.The test suite,Matbench,is a set of 13 ML tasks that range in size from 312 to 132k samples and contain data from 10 density functional theory-derived and experimental sources. 展开更多
关键词 MATERIALS AUTOMATED PROPERTY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部