The multiple coupling of composite laminates has a unique advantage in improving the macro mechanical properties of composite structures.A total of three hygro-thermally stablemulti-coupled laminates with extensiontwi...The multiple coupling of composite laminates has a unique advantage in improving the macro mechanical properties of composite structures.A total of three hygro-thermally stablemulti-coupled laminates with extensiontwisting coupling were presented,which were conducive to the formation of passive adaptive structures.Then,the multi-coupled laminates were used to design the bending-twisting coupled box structure,in which the configuration of laminate and box structure could be extended to variable cross-section configuration.The optimal design of stacking sequence was realized,the optimization objectives of which were to maximize bending-twisting coupling of box structure and extension-twisting coupling of laminate,respectively.The effects of multiple coupling on hygro-thermal stability,coupling,failure strength,buckling load,robustness and other comprehensive mechanical properties of laminates and box structures were analyzed by parametric modeling method.The results show that the extension-twisting coupling of laminate and the bending-twisting coupling of box structures can be greatly improved by 450%and 260%at maximum,respectively.Meanwhile,it would have a negative impact on the failure strength and buckling load,which,however,can be minimized by a reasonable paving method.Multicoupled laminates have good robustness,and the bending-twisting coupling helps improve robustness.Finally,the hygro-thermal stability and mechanical properties were verified by numerical simulation with finite element method.展开更多
Human-centric service is an important domain in smart city and includes rich applications that help residents with shopping, dining, transportation, entertainment, and other daily activities. These applications have g...Human-centric service is an important domain in smart city and includes rich applications that help residents with shopping, dining, transportation, entertainment, and other daily activities. These applications have generated a massive amount of hierarchical data with different schemas. In order to manage and analyze the city-wide and cross-application data in a unified way, data schema integration is necessary. However, data from human-centric services has some distinct characteristics, such as lack of support for semantic, matching, large number of schemas, and incompleteness of schema element labels. These make the schema integra- tion difficult using existing approaches. We propose a novel framework for the data schema integration of the human-centric services in smart city. The framework uses both schema metadata and instance data to do schema matching, and introduces human intervention based on a similarity entropy criteria to balance precision and efficiency. Moreover, the framework works in an incremental manner to reduce computation workload. We conduct an experiment with real-world dataset collected from multiple estate sale application systems. The results show that our approach can produce high-quality mediated schema with relatively less human in- terventions compared to the baseline method.展开更多
Humanoid robots exhibit structures and movements akin to those of humans,enabling them to assist or substitute for humans in various operations without necessitating alterations to their typical environment and tools....Humanoid robots exhibit structures and movements akin to those of humans,enabling them to assist or substitute for humans in various operations without necessitating alterations to their typical environment and tools.Sustaining bal-ance amidst disturbances constitutes a fundamental capability for humanoid robots.Consequently,adopting efficacious strategies to manage instability and mitigate injuries resulting from falls assumes paramount importance in advancing the widespread adoption of humanoid robotics.This paper presents a comprehensive overview of the ongoing development of strategies for coping with falls in humanoid robots.It systematically reviews and discusses three critical facets:fall state detection,preventive actions against falls,and post-fall protection measures.The paper undertakes a thorough classifica-tion of existing coping methodologies across different stages of falls,analyzes the merits and drawbacks of each approach,and outlines the evolving trajectory of solutions for addressing fall-related challenges across distinct stages.Finally,the paper provides a succinct summary and future prospects for the current fall coping strategies tailored for humanoid robots.展开更多
Once working at heights is dangerous,it is a significant accident.These accidents brought substantial economic losses and caused a large number of casualties.Therefore,it is essential to use wall-climbing robots to re...Once working at heights is dangerous,it is a significant accident.These accidents brought substantial economic losses and caused a large number of casualties.Therefore,it is essential to use wall-climbing robots to replace manual work at heights.The design of the wall-climbing robot is inspired by the climbing action of insects or animals.An intelligent bionic robot device can carry special equipment to operate on the wall and perform some dangerous operations instead of firefighters or inspection personnel more efficiently.The scope of application is vast.This paper firstly summarizes the research progress of wall-climbing robots with three different moving methods:wheel-climbing,crawler-based,and leg-footed robots;summarizes the applications and breakthroughs of four adsorption technologies:negative pressure,magnetic force,bionic and electrostatic;discusses the application of motion control algorithms in wall-climbing robots.Secondly,the advantages and disadvantages of different migration modes and adsorption methods are pointed out.The distribution and advantages of the combined application of different migration modes and adsorption methods are analyzed.In addition,the future development trend of wall-climbing robots and the promoting effect of bionic technology development on wall-climbing robots are proposed.The content of this paper will provide helpful guidance for the research of wall-climbing robots.展开更多
基金the National Natural Science Foundation of China(Grant No.11472003)the Natural Science Foundation of Hunan Province of China(Grant No.2021JJ30770)the Postgraduate Scientific Research Innovation Project of Hunan Province(Grant No.CX20200007).
文摘The multiple coupling of composite laminates has a unique advantage in improving the macro mechanical properties of composite structures.A total of three hygro-thermally stablemulti-coupled laminates with extensiontwisting coupling were presented,which were conducive to the formation of passive adaptive structures.Then,the multi-coupled laminates were used to design the bending-twisting coupled box structure,in which the configuration of laminate and box structure could be extended to variable cross-section configuration.The optimal design of stacking sequence was realized,the optimization objectives of which were to maximize bending-twisting coupling of box structure and extension-twisting coupling of laminate,respectively.The effects of multiple coupling on hygro-thermal stability,coupling,failure strength,buckling load,robustness and other comprehensive mechanical properties of laminates and box structures were analyzed by parametric modeling method.The results show that the extension-twisting coupling of laminate and the bending-twisting coupling of box structures can be greatly improved by 450%and 260%at maximum,respectively.Meanwhile,it would have a negative impact on the failure strength and buckling load,which,however,can be minimized by a reasonable paving method.Multicoupled laminates have good robustness,and the bending-twisting coupling helps improve robustness.Finally,the hygro-thermal stability and mechanical properties were verified by numerical simulation with finite element method.
基金funded by the National High Technology Research and Development Program of China(863)under Grant No.2013AA01A605
文摘Human-centric service is an important domain in smart city and includes rich applications that help residents with shopping, dining, transportation, entertainment, and other daily activities. These applications have generated a massive amount of hierarchical data with different schemas. In order to manage and analyze the city-wide and cross-application data in a unified way, data schema integration is necessary. However, data from human-centric services has some distinct characteristics, such as lack of support for semantic, matching, large number of schemas, and incompleteness of schema element labels. These make the schema integra- tion difficult using existing approaches. We propose a novel framework for the data schema integration of the human-centric services in smart city. The framework uses both schema metadata and instance data to do schema matching, and introduces human intervention based on a similarity entropy criteria to balance precision and efficiency. Moreover, the framework works in an incremental manner to reduce computation workload. We conduct an experiment with real-world dataset collected from multiple estate sale application systems. The results show that our approach can produce high-quality mediated schema with relatively less human in- terventions compared to the baseline method.
基金supported by the key research and development project of Science and Technology Department of Jilin Province(No.20230201102GX)the Natural Science Foundation of Chongqing(No.CSTB2022NSCQ-MSX0278)the 2023 college students innovation and entrepreneurship training plan(202310183105).
文摘Humanoid robots exhibit structures and movements akin to those of humans,enabling them to assist or substitute for humans in various operations without necessitating alterations to their typical environment and tools.Sustaining bal-ance amidst disturbances constitutes a fundamental capability for humanoid robots.Consequently,adopting efficacious strategies to manage instability and mitigate injuries resulting from falls assumes paramount importance in advancing the widespread adoption of humanoid robotics.This paper presents a comprehensive overview of the ongoing development of strategies for coping with falls in humanoid robots.It systematically reviews and discusses three critical facets:fall state detection,preventive actions against falls,and post-fall protection measures.The paper undertakes a thorough classifica-tion of existing coping methodologies across different stages of falls,analyzes the merits and drawbacks of each approach,and outlines the evolving trajectory of solutions for addressing fall-related challenges across distinct stages.Finally,the paper provides a succinct summary and future prospects for the current fall coping strategies tailored for humanoid robots.
基金funded by the Science and Technology Development Fund,Macao SAR(SKL-IOTSC-2018-2020)the Shanxi Science and Technology Major Project(Grant Number 20191101014).
文摘Once working at heights is dangerous,it is a significant accident.These accidents brought substantial economic losses and caused a large number of casualties.Therefore,it is essential to use wall-climbing robots to replace manual work at heights.The design of the wall-climbing robot is inspired by the climbing action of insects or animals.An intelligent bionic robot device can carry special equipment to operate on the wall and perform some dangerous operations instead of firefighters or inspection personnel more efficiently.The scope of application is vast.This paper firstly summarizes the research progress of wall-climbing robots with three different moving methods:wheel-climbing,crawler-based,and leg-footed robots;summarizes the applications and breakthroughs of four adsorption technologies:negative pressure,magnetic force,bionic and electrostatic;discusses the application of motion control algorithms in wall-climbing robots.Secondly,the advantages and disadvantages of different migration modes and adsorption methods are pointed out.The distribution and advantages of the combined application of different migration modes and adsorption methods are analyzed.In addition,the future development trend of wall-climbing robots and the promoting effect of bionic technology development on wall-climbing robots are proposed.The content of this paper will provide helpful guidance for the research of wall-climbing robots.