期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
法向扰动下裂隙砂岩的剪切力学性质与细观演化特征
1
作者 张洁 冯国瑞 +5 位作者 郭军 文晓泽 冯文明 张旭 张亮 dias daniel 《采矿与岩层控制工程学报》 北大核心 2025年第2期178-193,共16页
为探究裂隙岩体在扰动作用下的剪切力学行为和细观演化特征,开展了恒定作用下裂隙砂岩的直剪试验,采用PFC^(2D)建立了不同裂隙角度离散元模型,分析了法向恒定和扰动作用下试样的剪切强度和破坏特征;基于剪切过程中细观演化规律,揭示了... 为探究裂隙岩体在扰动作用下的剪切力学行为和细观演化特征,开展了恒定作用下裂隙砂岩的直剪试验,采用PFC^(2D)建立了不同裂隙角度离散元模型,分析了法向恒定和扰动作用下试样的剪切强度和破坏特征;基于剪切过程中细观演化规律,揭示了扰动作用下裂隙砂岩的裂纹扩展规律和能量耗散机理。研究结果表明:①预制裂隙使岩石剪切强度显著降低,两种加载模式下不同裂隙角度的剪切强度降幅分别为9.79%~20.28%和11.12%~16.78%;随着裂隙角度增加,应力–应变曲线斜率降低,剪切强度和峰值位移呈现出先增大后减小的趋势,具有明显的角度效应,剪切强度与裂隙角度成三次函数关系;法向扰动削弱了角度效应的影响,使岩石抵抗剪切变形的能力减弱,破坏提前。②在剪切过程中,岩石内部力链呈现出与荷载方向一致的演化趋势,微裂纹主要从试样两端和预制裂隙两端萌生和发育;微裂纹倾角主要分布在20°~80°,破坏后剪切裂纹占比为78%~81%,扰动作用使该过程中产生的各类裂纹增多,起裂位移减小,剪切裂纹占比增大。③AE振铃计数的发展可分为平静期、缓增期、爆发期和稳定期,扰动作用下“平静期”较短,且在“缓增期”呈现出阶梯性增长趋势。④扰动作用下的剪切试验,试样失效点的总能量较低;直至试样破坏,大部分输入能都以弹性应变能的形式储存在试样中,且在扰动作用下的弹性能显著低于恒定作用下的,降幅达到9.87%~13.94%;扰动使试样储能能力降低,耗散能增加,更容易产生裂纹从而破坏。 展开更多
关键词 裂隙岩体 法向扰动 剪切特性 细观演化 能量耗散
在线阅读 下载PDF
Adaptive Bayesian inversion of pore water pressures based on artificial neural network : An earth dam case study
2
作者 AN Lu CARVAJAL Claudio +4 位作者 dias daniel PEYRAS Laurent JENCK Orianne BREUL Pierre ZHANG Ting-ting 《Journal of Central South University》 CSCD 2024年第11期3930-3947,共18页
Most earth-dam failures are mainly due to seepage,and an accurate assessment of the permeability coefficient provides an indication to avoid a disaster.Parametric uncertainties are encountered in the seepage analysis,... Most earth-dam failures are mainly due to seepage,and an accurate assessment of the permeability coefficient provides an indication to avoid a disaster.Parametric uncertainties are encountered in the seepage analysis,and may be reduced by an inverse procedure that calibrates the simulation results to observations on the real system being simulated.This work proposes an adaptive Bayesian inversion method solved using artificial neural network(ANN)based Markov Chain Monte Carlo simulation.The optimized surrogate model achieves a coefficient of determination at 0.98 by ANN with 247 samples,whereby the computational workload can be greatly reduced.It is also significant to balance the accuracy and efficiency of the ANN model by adaptively updating the sample database.The enrichment samples are obtained from the posterior distribution after iteration,which allows a more accurate and rapid manner to the target posterior.The method was then applied to the hydraulic analysis of an earth dam.After calibrating the global permeability coefficient of the earth dam with the pore water pressure at the downstream unsaturated location,it was validated by the pore water pressure monitoring values at the upstream saturated location.In addition,the uncertainty in the permeability coefficient was reduced,from 0.5 to 0.05.It is shown that the provision of adequate prior information is valuable for improving the efficiency of the Bayesian inversion. 展开更多
关键词 earth dam permeability coefficient pore water pressure monitoring data bayesian inversion artificial neural network
在线阅读 下载PDF
Tunnel face reliability analysis using active learning Kriging model——Case of a two-layer soils 被引量:4
3
作者 LI Tian-zheng dias daniel 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1735-1746,共12页
This paper is devoted to the probabilistic stability analysis of a tunnel face excavated in a two-layer soil. The interface of the soil layers is assumed to be positioned above the tunnel roof. In the framework of lim... This paper is devoted to the probabilistic stability analysis of a tunnel face excavated in a two-layer soil. The interface of the soil layers is assumed to be positioned above the tunnel roof. In the framework of limit analysis, a rotational failure mechanism is adopted to describe the face failure considering different shear strength parameters in the two layers. The surrogate Kriging model is introduced to replace the actual performance function to perform a Monte Carlo simulation. An active learning function is used to train the Kriging model which can ensure an efficient tunnel face failure probability prediction without loss of accuracy. The deterministic stability analysis is given to validate the proposed tunnel face failure model. Subsequently, the number of initial sampling points, the correlation coefficient, the distribution type and the coefficient of variability of random variables are discussed to show their influences on the failure probability. The proposed approach is an advisable alternative for the tunnel face stability assessment and can provide guidance for tunnel design. 展开更多
关键词 reliability analysis tunnel face Kriging model active learning function failure probability
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部