The interaction by hydrogen bond formation of some primary alcohols ( l-heptanol, l-octanol and l-decanol) with esters (methyl methacrylate, ethyl methacrylate and butyl methacrylate) was investigated in non-polar...The interaction by hydrogen bond formation of some primary alcohols ( l-heptanol, l-octanol and l-decanol) with esters (methyl methacrylate, ethyl methacrylate and butyl methacrylate) was investigated in non-polar solvents viz., n-heptane, CC14 and benzene by means of FTIR spectroscopy. Formation constants and free energy changes of complex formation were determined. The dependence of the equilibrium constants and free energy changes of complex formation on the alkyl chain length of both the alcohols and esters are discussed. The solvent interaction between the solute and solvent. effect on the hydrogen bond formation is discussed in terms of specific展开更多
Using time domain reflectometry (TDR),dielectric relaxation studies were carried out on binary mixtures of amides (N-methylformamide (NMF) and N,N-dimethylformamide (DMF)) with alcohols (1-butanol,1-pentanol,1-hexanol...Using time domain reflectometry (TDR),dielectric relaxation studies were carried out on binary mixtures of amides (N-methylformamide (NMF) and N,N-dimethylformamide (DMF)) with alcohols (1-butanol,1-pentanol,1-hexanol,1-heptanol,1-octanol,and 1-decanol) for various concentrations over the frequency range from 10 MHz to 10 GHz at 303 K. The Kirkwood correlation factor and excess dielectric constant properties were determined and discussed to yield information on the molecular interactions of the systems. The relaxation time varied with the chain length of alcohols and substituted amides were noticed. The Bruggeman plot shows a deviation from linearity. This deviation was attributed to some sort of molecular interaction which may take place between the alcohols and substituted amides. The excess static permittivity and excess inverse relaxation time values varied from negative to positive for all the systems indicating that the solute-solvent interaction existed between alcohols and substituted amides for all the dynamics of the mixture.展开更多
Dielectric relaxation of alcohols (1-propanol, 1-butanol, sec-butanol, tert-butanol, 1-pentanol, 1-heptanol, 1-octanol, and 1-decanol) with acrylic esters (methyl methacrylate, ethyl methacrylate, and butyl methacryla...Dielectric relaxation of alcohols (1-propanol, 1-butanol, sec-butanol, tert-butanol, 1-pentanol, 1-heptanol, 1-octanol, and 1-decanol) with acrylic esters (methyl methacrylate, ethyl methacrylate, and butyl methacrylate) at 9.84 GHz were studied in n-heptane at 298 K. The result showed that 1∶1 complex was predominant in these systems. The relaxation time showed a linear dependence with alkyl chain length of both alcohols and acrylic esters, but the dielectric constant showed a reverse trend. A comparative study of the free energy of activation for the dielectric relaxation and viscous flow suggested that a greater interference by neighboring atom was observed in the process of viscous flow than in dielectric relaxation, as the latter involved rotational form of motion, whereas the viscous flow involved both rotational and translational forms of motion.展开更多
文摘The interaction by hydrogen bond formation of some primary alcohols ( l-heptanol, l-octanol and l-decanol) with esters (methyl methacrylate, ethyl methacrylate and butyl methacrylate) was investigated in non-polar solvents viz., n-heptane, CC14 and benzene by means of FTIR spectroscopy. Formation constants and free energy changes of complex formation were determined. The dependence of the equilibrium constants and free energy changes of complex formation on the alkyl chain length of both the alcohols and esters are discussed. The solvent interaction between the solute and solvent. effect on the hydrogen bond formation is discussed in terms of specific
文摘Using time domain reflectometry (TDR),dielectric relaxation studies were carried out on binary mixtures of amides (N-methylformamide (NMF) and N,N-dimethylformamide (DMF)) with alcohols (1-butanol,1-pentanol,1-hexanol,1-heptanol,1-octanol,and 1-decanol) for various concentrations over the frequency range from 10 MHz to 10 GHz at 303 K. The Kirkwood correlation factor and excess dielectric constant properties were determined and discussed to yield information on the molecular interactions of the systems. The relaxation time varied with the chain length of alcohols and substituted amides were noticed. The Bruggeman plot shows a deviation from linearity. This deviation was attributed to some sort of molecular interaction which may take place between the alcohols and substituted amides. The excess static permittivity and excess inverse relaxation time values varied from negative to positive for all the systems indicating that the solute-solvent interaction existed between alcohols and substituted amides for all the dynamics of the mixture.
文摘Dielectric relaxation of alcohols (1-propanol, 1-butanol, sec-butanol, tert-butanol, 1-pentanol, 1-heptanol, 1-octanol, and 1-decanol) with acrylic esters (methyl methacrylate, ethyl methacrylate, and butyl methacrylate) at 9.84 GHz were studied in n-heptane at 298 K. The result showed that 1∶1 complex was predominant in these systems. The relaxation time showed a linear dependence with alkyl chain length of both alcohols and acrylic esters, but the dielectric constant showed a reverse trend. A comparative study of the free energy of activation for the dielectric relaxation and viscous flow suggested that a greater interference by neighboring atom was observed in the process of viscous flow than in dielectric relaxation, as the latter involved rotational form of motion, whereas the viscous flow involved both rotational and translational forms of motion.