期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Construction of two-dimensional heterojunctions based on metal-free semiconductor materials and Covalent Organic Frameworks for exceptional solar energy catalysis
1
作者 Haijun Hu daming feng +5 位作者 Kailai Zhang Hui Li Hongge Pan Hongwei Huang Xiaodong Sun Tianyi Ma 《Green Energy & Environment》 2025年第10期1981-1989,共9页
Covalent organic frameworks(COFs)are newly developed crystalline substances that are garnering growing interest because of their ultrahigh porosity,crystalline nature,and easy-modified architecture,showing promise in ... Covalent organic frameworks(COFs)are newly developed crystalline substances that are garnering growing interest because of their ultrahigh porosity,crystalline nature,and easy-modified architecture,showing promise in the field of photocatalysis.However,it is difficult for pure COFs materials to achieve excellent photocatalytic hydrogen production due to their severe carrier recombination problems.To mitigate this crucial issue,establishing heterojunction is deemed an effective approach.Nonetheless,many of the metal-containing materials that have been used to construct heterojunctions with COFs own a number of drawbacks,including small specific surface area and rare active sites(for inorganic semiconductor materials),wider bandgaps and higher preparation costs(for MOFs).Therefore,it is necessary to choose metal-free materials that are easy to prepare.Red phosphorus(RP),as a semiconductor material without metal components,with suitable bandgap,moderate redox potential,relatively minimal toxicity,is affordable and readily available.Herein,a range of RP/TpPa-1-COF(RP/TP1C)composites have been successfully prepared through solvothermal method.The two-dimensional structure of the two materials causes strong interactions between the materials,and the construction of heterojunctions effectively inhibits the recombination of photogenic charge carriers.As a consequence,the 9%RP/TP1C composite,with the optimal photocatalytic ability,achieves a photocatalytic H2 evolution rate of 6.93 mmol g^(-1) h^(-1),demonstrating a 10.19-fold increase compared to that of bare RP and a 4.08-fold improvement over that of pure TP1C.This article offers a novel and innovative method for the advancement of efficient COF-based photocatalysts. 展开更多
关键词 Covalent organic frameworks HETEROJUNCTION PHOTOCATALYSIS Hydrogen production
在线阅读 下载PDF
Ultrafine red phosphorus confined in reasonably designed pitch-based carbon matrix built of well-interconnected carbon nanosheets for high-performance lithium and potassium storage 被引量:4
2
作者 Chang Liu Junjun Yao +7 位作者 Ying Sun Yaming Zhu Hongmei Li daming feng Hui Li Yunlei Yang Quanxing Mao Tianyi Ma 《Resources Chemicals and Materials》 2024年第1期54-61,共8页
Red phosphorus has been well-recognized as promising anode materials for lithium-ion batteries(LIBs)and potassium-ion batteries(PIBs)due to its extremely high theoretical capacity and low cost.However,the huge volume ... Red phosphorus has been well-recognized as promising anode materials for lithium-ion batteries(LIBs)and potassium-ion batteries(PIBs)due to its extremely high theoretical capacity and low cost.However,the huge volume change and poor electric conductivity severely limit its further practical application.Herein,the nanoscale ultrafine red phosphorus has been successfully confined in a three-dimensional pitch-based porous carbon skeleton composed of well-interconnected carbon nanosheets through the vaporization-condensation method.Except for the traditional requirement of high electric conductivity and stable mechanical stability,the micropores and small mesopores in the porous carbon matrix centered at 1 to 3 nm and the abundant amount of oxygen-containing functional groups are also beneficial for the high loading and dispersion of red phosphorus.As anode for LIBs,the composite exhibits high reversible discharge capacities of 968 mAh g^(-1),excellent rate capabilities of 593 mAh g^(-1)at 2 A g^(-1),and long cycle performance of 557 mAh g^(-1)at 2 A g^(-1).More impressively,as the anode for PIBs,the composite presents a high reversible capacity of 661 mAh g^(-1)and a stable capacity of 312 mAh g^(-1)at 0.5 A g^(-1)for 500 cycles with a capacity retention up to 84.3%.This work not only sheds light on the structure design of carbon hosts with specific pore structure but also open an avenue for high value-added utilization of coal tar pitch. 展开更多
关键词 Carbon anodes Coal tar pitch Lithium-ion batteries Potassium-ion batteries Red phosphorus
在线阅读 下载PDF
MOF‐derived 1D/3D N‐doped porous carbon for spatially confined electrochemical CO_(2) reduction to adjustable syngas
3
作者 Wei Zhang Hui Li +5 位作者 daming feng Chenglin Wu Chenghua Sun Baohua Jia Xue Liu Tianyi Ma 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期1-13,共13页
Electrochemical reduction of CO_(2) to syngas(CO and H_(2))offers an efficient way to mitigate carbon emissions and store intermittent renewable energy in chemicals.Herein,the hierarchical one‐dimensional/three‐dime... Electrochemical reduction of CO_(2) to syngas(CO and H_(2))offers an efficient way to mitigate carbon emissions and store intermittent renewable energy in chemicals.Herein,the hierarchical one‐dimensional/three‐dimensional nitrogen‐doped porous carbon(1D/3D NPC)is prepared by carbonizing the composite of Zn‐MOF‐74 crystals in situ grown on a commercial melamine sponge(MS),for electrochemical CO_(2) reduction reaction(CO_(2)RR).The 1D/3D NPC exhibits a high CO/H_(2) ratio(5.06)and CO yield(31 mmol g^(−1)h^(−1))at−0.55 V,which are 13.7 times and 21.4 times those of 1D porous carbon(derived from Zn‐MOF‐74)and N‐doped carbon(carbonized by MS),respectively.This is attributed to the unique spatial environment of 1D/3D NPC,which increases the adsorption capacity of CO_(2) and promotes electron transfer from the 3D N‐doped carbon framework to 1D carbon,improving the reaction kinetics of CO_(2)RR.Experimental results and charge density difference plots indicate that the active site of CO_(2)RR is the positively charged carbon atom adjacent to graphitic N on 1D carbon and the active site of HER is the pyridinic N on 1D carbon.The presence of pyridinic N and pyrrolic N reduces the number of electron transfer,decreasing the reaction kinetics and the activity of CO_(2)RR.The CO/H_(2) ratio is related to the distribution of N species and the specific surface area,which are determined by the degree of spatial confinement effect.The CO/H_(2) ratios can be regulated by adjusting the carbonization temperature to adjust the degree of spatial confinement effect.Given the low cost of feedstock and easy strategy,1D/3D NPC catalysts have great potential for industrial application. 展开更多
关键词 electrochemical CO_(2)reduction reaction melamine sponge metal‐organic frameworks porous carbon SYNGAS
在线阅读 下载PDF
Circular RNA circ_0003609 ameliorates hypertrophied ligamentum flavum by regulating the miR-155/SIRT1 axis
4
作者 GUIBIN ZHONG SHURONG WANG +5 位作者 YUJIN HE daming feng KE WEI YANQIU YANG JIANWEI CHEN JUNLING CHEN 《BIOCELL》 SCIE 2024年第6期1001-1008,共8页
Background:Hypertrophy of the ligamentumflavum(HLF)is a common contributor to spinal stenosis which results in significant neurological impairments.Circular RNA(circRNA)circ_0003609 has been linked to HLF;however,the ex... Background:Hypertrophy of the ligamentumflavum(HLF)is a common contributor to spinal stenosis which results in significant neurological impairments.Circular RNA(circRNA)circ_0003609 has been linked to HLF;however,the exact mechanism by which it causes this disease is unclear.Methods:Circ_0003609 expressions were regulated in HLF cells by overexpression vectors and RNA interference.Cell proliferation andfibrosis-related gene expression were checked by the Cell Counting Kit-8(CCK-8)assay and western blotting.CircBank’s prediction of the association between miR-155 and circ_0003609 was supported by a dual-luciferase reporter experiment.The function of the miR-155/sirtuin 1(SIRT1)axis in controlling HLFfibrosis was further examined.Results:Overexpression of circ_0003609 suppressed HLF cell propagation andfibrosis compared to its silencing.It was found that circ_0003609 served as the sponge for miR-155 and that the circ_0003609/miR-155 axis controlled thefibrosis of HLF cells.It was found that circ_0003609 acted as a sponge for miR-155,regulating thefibrosis of HLF cells.Further,miR-155 targets SIRT1,and the miR-155/SIRT1 axis promotes HLF cellfibrosis.Conclusion:Circ_0003609 ameliorates hypertrophied ligamentumflavum(LF)by modulating the miR-155/SIRT1 axis,indicating a potential treatment approach for HLF. 展开更多
关键词 Circular RNA Circ_0003609 Hypertrophy of ligamentum flavum MIR-155 Sirtuin 1 FIBROSIS
暂未订购
Nanoengineering Metal–Organic Frameworks and Derivatives for Electrosynthesis of Ammonia 被引量:4
5
作者 daming feng Lixue Zhou +3 位作者 Timothy J.White Anthony K.Cheetham Tianyi Ma fengxia Wei 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期205-240,共36页
Electrocatalytic synthesis under mild conditions has become increasingly important as one of the practical alternatives for industrial applications,especially for the green ammonia(NH_(3))industry.A properly engineere... Electrocatalytic synthesis under mild conditions has become increasingly important as one of the practical alternatives for industrial applications,especially for the green ammonia(NH_(3))industry.A properly engineered electrocatalyst plays a vital role in the realization of superior catalytic performance.Among various types of promising nanomaterials,metal–organic frameworks(MOFs)are competitive candidates for developing efficient electrocatalytic NH_(3) synthesis from simple nitrogen-containing molecules or ions,such as N_(2) and NO_(3)^(−).In this review,recent advances in the development of electrocatalysts derived from MOFs for the electrosynthesis of NH_(3) are collected,categorized,and discussed,including their application in the N_(2) reduction reaction(NRR)and the NO_(3)^(−)reduction reaction(NO3RR).Firstly,the fundamental principles are illustrated,such as plausible mechanisms of NH_(3) generation from N_(2) and NO_(3)^(−),the apparatus of corresponding electrocatalysis,parameters for evaluation of reaction efficiency,and detection methods of yielding NH_(3).Then,the electrocatalysts for NRR processes are discussed in detail,including pristine MOFs,MOF-hybrids,MOF-derived N-doped porous carbons,single atomic catalysts from pyrolysis of MOFs,and other MOF-related materials.Subsequently,MOF-related NO3RR processes are also listed and discussed.Finally,the existing challenges and prospects for the rational design and fabrication of electrocatalysts from MOFs for electrochemical NH_(3) synthesis are presented,such as the evolution of investigation methods with artificial intelligence,innovation in synthetic methods of MOF-related catalysts,advancement of characterization techniques,and extended electrocatalytic reactions. 展开更多
关键词 Metal–organic frameworks Electrosynthesis of ammonia Nitrogen reduction reactions Nitrate reduction reactions
在线阅读 下载PDF
Bismuth-Based Free-Standing Electrodes for Ambient-Condition Ammonia Production in Neutral Media 被引量:3
6
作者 Ying Sun Zizhao Deng +7 位作者 Xi‑Ming Song Hui Li Zihang Huang Qin Zhao daming feng Wei Zhang Zhaoqing Liu Tianyi Ma 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第10期164-175,共12页
Electrocatalytic nitrogen reduction reaction is a carbon-free and energy-saving strategy for efficient synthesis of ammonia under ambient conditions.Here,we report the synthesis of nanosized Bi2O3 particles grown on f... Electrocatalytic nitrogen reduction reaction is a carbon-free and energy-saving strategy for efficient synthesis of ammonia under ambient conditions.Here,we report the synthesis of nanosized Bi2O3 particles grown on functionalized exfoliated graphene(Bi2O3/FEG)via a facile electrochemical deposition method.The obtained free-standing Bi2O3/FEG achieves a high Faradaic efficiency of 11.2%and a large NH3 yield of 4.21±0.14μgNH3 h^-1 cm^-2 at-0.5 V versus reversible hydrogen electrode in 0.1 M Na2SO4,better than that in the strong acidic and basic media.Benefiting from its strong interaction of Bi 6p band with the N2p orbitals,binder-free characteristic,and facile electron transfer,Bi2O3/FEG achieves superior catalytic performance and excellent long-term stability as compared with most of the previous reported catalysts.This study is significant to design low-cost,high-efficient Bi-based electrocatalysts for electrochemical ammonia synthesis. 展开更多
关键词 N2 reduction Bi2O3 nanoplate ELECTROCATALYSIS FREE-STANDING
在线阅读 下载PDF
Surface-defective FeS2 for electrochemical NH3 production under ambient conditions 被引量:4
7
作者 daming feng Xu Zhang +1 位作者 Ying Sun Tianyi Ma 《Nano Materials Science》 CAS 2020年第2期132-139,共8页
In the viewpoint of ammonia economy,electrochemical N2 reduction reaction(NRR)under mild condition is a very promising approach for sustainable development.By virtue of robust activity and low cost,transition-metalbas... In the viewpoint of ammonia economy,electrochemical N2 reduction reaction(NRR)under mild condition is a very promising approach for sustainable development.By virtue of robust activity and low cost,transition-metalbased materials become one kind of the most attractive electrocatalysts in realizing ammonia synthesis to the industrial level.However,the investigation related to NRR electrocatalysts still mainly rely on costly substance or fabrication process,which greatly restrict their large-scale applications.In this work,a simple fabricated FeS2 electrode is adopted as NRR catalysts.The abundant surface defects due to the existence of Cr element,as well as the synergistic effect between FeS2 crystal planes provided excellent electrocatalytic performance with a high NH3 yield rate(11.5μg h^-1mg^-1 Fe)and Faradaic efficiency(14.6%)at-0.2 V vs.reversible hydrogen electrode(RHE)toward NRR under ambient conditions.The superior catalytic performance of such non-precious metal catalysts would strongly promote the application of NRR process industrially. 展开更多
关键词 Surface defects ELECTROCATALYSIS Ammonia synthesis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部