We report on commissioning experiments at the high-energy,high-temperature(HHT)target area at the GSI Helmholtzzentrum für Schwerionenforschung GmbH,Darmstadt,Germany,combining for the first time intense pulses o...We report on commissioning experiments at the high-energy,high-temperature(HHT)target area at the GSI Helmholtzzentrum für Schwerionenforschung GmbH,Darmstadt,Germany,combining for the first time intense pulses of heavy ions from the SIS18 synchrotron with high-energy laser pulses from the PHELIX laser facility.We demonstrate the use of X-ray diagnostic techniques based on intense laserdriven X-ray sources,which will allow probing of large samples volumetrically heated by the intense heavy-ion beams.A new target chamber as well as optical diagnostics for ion-beam characterization and fast pyrometric temperature measurements complement the experimental capabilities.This platform is designed for experiments at the future Facility for Antiproton and Ion Research in Europe GmbH(FAIR),where unprecedented ion-beam intensities will enable the generation of millimeter-sized samples under high-energy-density conditions.展开更多
We present in situ measurements of spectrally resolved X-ray scattering and X-ray diffraction from monocrystalline diamond samples heatedwith an intense pulse of heavy ions.In this way,we determine the samples’heatin...We present in situ measurements of spectrally resolved X-ray scattering and X-ray diffraction from monocrystalline diamond samples heatedwith an intense pulse of heavy ions.In this way,we determine the samples’heating dynamics and their microscopic and macroscopic structuralintegrity over a timespan of several microseconds.Connecting the ratio of elastic to inelastic scattering with state-of-the-art density functionaltheory molecular dynamics simulations allows the inference of average temperatures around 1300 K,in agreement with predictions fromstopping power calculations.The simultaneous diffraction measurements show no hints of any volumetric graphitization of the material,butdo indicate the onset of fracture in the diamond sample.Our experiments pave the way for future studies at the Facility for Antiproton andIon Research,where a substantially increased intensity of the heavy ion beam will be available.展开更多
基金supported by GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, as part of the R & D Project No. SI-URDK2224 with the University of Rostocksupport by the Federal Ministry of Education and Research (BMBF) under Grant No. 05P21RFFA2supported by the Helmholtz Association under Grant No. ERC-RA-0041。
文摘We report on commissioning experiments at the high-energy,high-temperature(HHT)target area at the GSI Helmholtzzentrum für Schwerionenforschung GmbH,Darmstadt,Germany,combining for the first time intense pulses of heavy ions from the SIS18 synchrotron with high-energy laser pulses from the PHELIX laser facility.We demonstrate the use of X-ray diagnostic techniques based on intense laserdriven X-ray sources,which will allow probing of large samples volumetrically heated by the intense heavy-ion beams.A new target chamber as well as optical diagnostics for ion-beam characterization and fast pyrometric temperature measurements complement the experimental capabilities.This platform is designed for experiments at the future Facility for Antiproton and Ion Research in Europe GmbH(FAIR),where unprecedented ion-beam intensities will enable the generation of millimeter-sized samples under high-energy-density conditions.
基金support by the Federal Ministry of Education and Research(BMBF)under Grant No.05P21RFFA2supported by the Helmholtz Association under Grant No.ERC-RA-0041.
文摘We present in situ measurements of spectrally resolved X-ray scattering and X-ray diffraction from monocrystalline diamond samples heatedwith an intense pulse of heavy ions.In this way,we determine the samples’heating dynamics and their microscopic and macroscopic structuralintegrity over a timespan of several microseconds.Connecting the ratio of elastic to inelastic scattering with state-of-the-art density functionaltheory molecular dynamics simulations allows the inference of average temperatures around 1300 K,in agreement with predictions fromstopping power calculations.The simultaneous diffraction measurements show no hints of any volumetric graphitization of the material,butdo indicate the onset of fracture in the diamond sample.Our experiments pave the way for future studies at the Facility for Antiproton andIon Research,where a substantially increased intensity of the heavy ion beam will be available.