A comprehensive study of an all-optical chaotic communication system,including experimental realization,real-world testing and performance characterization through bit-error-rate analysis,is presented.Pseudorandom bit...A comprehensive study of an all-optical chaotic communication system,including experimental realization,real-world testing and performance characterization through bit-error-rate analysis,is presented.Pseudorandom bit sequences that are effectively encrypted in a broadband carrier produced by a chaotic emitter and sent for transmission are recovered at the receiver side.Bit-error-rate(BER) values as low as 10-7 for 1 Gb/s data rate have been achieved.Different data code lengths and bit-rates at the Gb/s region have been tested.The application of optical transmission using 100km fiber spools in an in-situ experiment and 120km in an installed optical network showed that transmission effects do not act as a considerably deteriorating factor in the final performance of chaos-based optical communication systems.展开更多
文摘A comprehensive study of an all-optical chaotic communication system,including experimental realization,real-world testing and performance characterization through bit-error-rate analysis,is presented.Pseudorandom bit sequences that are effectively encrypted in a broadband carrier produced by a chaotic emitter and sent for transmission are recovered at the receiver side.Bit-error-rate(BER) values as low as 10-7 for 1 Gb/s data rate have been achieved.Different data code lengths and bit-rates at the Gb/s region have been tested.The application of optical transmission using 100km fiber spools in an in-situ experiment and 120km in an installed optical network showed that transmission effects do not act as a considerably deteriorating factor in the final performance of chaos-based optical communication systems.