This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a gen...This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a generalized polynomial chaos expansion(GPCE)for statistical moment and reliability analyses associated with the stochastic output and a static reanalysis method to generate the input-output data set.In the reanalysis,we employ substructuring for a structure to isolate its local regions that vary due to random inputs.This allows for avoiding repeated computations of invariant substructures while generating the input-output data set.Combining substructuring with static condensation further improves the computational efficiency of the reanalysis without losing accuracy.Consequently,the GPCE with the static reanalysis method can achieve significant computational saving,thus mitigating the curse of dimensionality to some degree for UQ under high-dimensional inputs.The numerical results obtained from a simple structure indicate that the proposed method for UQ produces accurate solutions more efficiently than the GPCE using full finite element analyses(FEAs).We also demonstrate the efficiency and scalability of the proposed method by executing UQ for a large-scale wing-box structure under ten-dimensional(all-dependent)random inputs.展开更多
This paper proposes a method to amplify the performance of a flexural-wave-generation system by utilizing the energy-localization characteristics of a phononic crystal(PnC)with a piezoelectric defect and an analytical...This paper proposes a method to amplify the performance of a flexural-wave-generation system by utilizing the energy-localization characteristics of a phononic crystal(PnC)with a piezoelectric defect and an analytical approach that accelerates the predictions of such wave-generation performance.The proposed analytical model is based on the Euler-Bernoulli beam theory.The proposed analytical approach,inspired by the transfer matrix and S-parameter methods,is used to perform band-structure and time-harmonic analyses.A comparison of the results of the proposed approach with those of the finite element method validates the high predictive capability and time efficiency of the proposed model.A case study is explored;the results demonstrate an almost ten-fold amplification of the velocity amplitudes of flexural waves leaving at a defect-band frequency,compared with a system without the PnC.Moreover,design guidelines for piezoelectric-defect-introduced PnCs are provided by analyzing the changes in wave-generation performance that arise depending on the defect location.展开更多
基金Project supported by the National Research Foundation of Korea(Nos.NRF-2020R1C1C1011970 and NRF-2018R1A5A7023490)。
文摘This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a generalized polynomial chaos expansion(GPCE)for statistical moment and reliability analyses associated with the stochastic output and a static reanalysis method to generate the input-output data set.In the reanalysis,we employ substructuring for a structure to isolate its local regions that vary due to random inputs.This allows for avoiding repeated computations of invariant substructures while generating the input-output data set.Combining substructuring with static condensation further improves the computational efficiency of the reanalysis without losing accuracy.Consequently,the GPCE with the static reanalysis method can achieve significant computational saving,thus mitigating the curse of dimensionality to some degree for UQ under high-dimensional inputs.The numerical results obtained from a simple structure indicate that the proposed method for UQ produces accurate solutions more efficiently than the GPCE using full finite element analyses(FEAs).We also demonstrate the efficiency and scalability of the proposed method by executing UQ for a large-scale wing-box structure under ten-dimensional(all-dependent)random inputs.
基金supported by the Basic Science Research Program through the National Research Foundation of Koreafunded by the Ministry of Education(No.2022R1I1A1A0105640611)。
文摘This paper proposes a method to amplify the performance of a flexural-wave-generation system by utilizing the energy-localization characteristics of a phononic crystal(PnC)with a piezoelectric defect and an analytical approach that accelerates the predictions of such wave-generation performance.The proposed analytical model is based on the Euler-Bernoulli beam theory.The proposed analytical approach,inspired by the transfer matrix and S-parameter methods,is used to perform band-structure and time-harmonic analyses.A comparison of the results of the proposed approach with those of the finite element method validates the high predictive capability and time efficiency of the proposed model.A case study is explored;the results demonstrate an almost ten-fold amplification of the velocity amplitudes of flexural waves leaving at a defect-band frequency,compared with a system without the PnC.Moreover,design guidelines for piezoelectric-defect-introduced PnCs are provided by analyzing the changes in wave-generation performance that arise depending on the defect location.