ELI-Beamlines(ELI-BL),one of the three pillars of the Extreme Light Infrastructure endeavour,will be in a unique position to perform research in high-energy-density-physics(HEDP),plasma physics and ultra-high intensit...ELI-Beamlines(ELI-BL),one of the three pillars of the Extreme Light Infrastructure endeavour,will be in a unique position to perform research in high-energy-density-physics(HEDP),plasma physics and ultra-high intensity(UHI)ð>10^(22) W=cm^(2)) lasereplasma interaction.Recently the need for HED laboratory physics was identified and the P3(plasma physics platform)installation under construction in ELI-BL will be an answer.The ELI-BL 10 PW laser makes possible fundamental research topics from high-field physics to new extreme states of matter such as radiation-dominated ones,high-pressure quantum ones,warm dense matter(WDM)and ultra-relativistic plasmas.HEDP is of fundamental importance for research in the field of laboratory astrophysics and inertial confinement fusion(ICF).Reaching such extreme states of matter now and in the future will depend on the use of plasma optics for amplifying and focusing laser pulses.This article will present the relevant technological infrastructure being built in ELI-BL for HEDP and UHI,and gives a brief overview of some research under way in the field of UHI,laboratory astrophysics,ICF,WDM,and plasma optics.展开更多
The P3 installation of ELI-Beamlines is conceived as an experimental platform for multiple high-repetition-rate laser beams spanning time scales from femtosecond via picosecond to nanosecond.The upcoming L4n laser bea...The P3 installation of ELI-Beamlines is conceived as an experimental platform for multiple high-repetition-rate laser beams spanning time scales from femtosecond via picosecond to nanosecond.The upcoming L4n laser beamline will provide shaped nanosecond pulses of up to 1.9 kJ at a maximum repetition rate of 1 shot/min.This beamline will provide unique possibilities for high-pressure,high-energy-density physics,warm dense matter,and laser–plasma interaction experiments.Owing to the high repetition rate,it will become possible to obtain considerable improvements in data statistics,in particular,for equation-of-state data sets.The nanosecond beam will be coupled with short sub-picosecond pulses,providing high-resolution diagnostic tools by either irradiating a backlighter target or driving a betatron setup to generate energetic electrons and hard X-rays.展开更多
基金The authors acknowledge support from the project ELI:Extreme Light Infrastructure from European Regional Devel-opment(CZ.02.1.01/0.0/0.0/15-008/0000162)Also supported by the project High Field Initiative(CZ.02.1.01/0.0/0.0/15-003/0000449)from European Regional Development Fund.
文摘ELI-Beamlines(ELI-BL),one of the three pillars of the Extreme Light Infrastructure endeavour,will be in a unique position to perform research in high-energy-density-physics(HEDP),plasma physics and ultra-high intensity(UHI)ð>10^(22) W=cm^(2)) lasereplasma interaction.Recently the need for HED laboratory physics was identified and the P3(plasma physics platform)installation under construction in ELI-BL will be an answer.The ELI-BL 10 PW laser makes possible fundamental research topics from high-field physics to new extreme states of matter such as radiation-dominated ones,high-pressure quantum ones,warm dense matter(WDM)and ultra-relativistic plasmas.HEDP is of fundamental importance for research in the field of laboratory astrophysics and inertial confinement fusion(ICF).Reaching such extreme states of matter now and in the future will depend on the use of plasma optics for amplifying and focusing laser pulses.This article will present the relevant technological infrastructure being built in ELI-BL for HEDP and UHI,and gives a brief overview of some research under way in the field of UHI,laboratory astrophysics,ICF,WDM,and plasma optics.
基金The authors acknowledge support from the projects“Advanced Research Using High Intensity Laser Produced Photons and Particles(ADONIS)”(Grant No.CZ.02.1.01/0.0/0.0/16_019/0000789)“High Field Initiative(HiFI)”(Grant No.CZ.02.1.01/0.0/0.0/15_003/0000449)both from the European Regional Development Fund.The results of the Project LQ1606 were obtained with financial support from the Ministry of Education,Youth and Sports as part of targeted support from the National Program of Sustainability II.
文摘The P3 installation of ELI-Beamlines is conceived as an experimental platform for multiple high-repetition-rate laser beams spanning time scales from femtosecond via picosecond to nanosecond.The upcoming L4n laser beamline will provide shaped nanosecond pulses of up to 1.9 kJ at a maximum repetition rate of 1 shot/min.This beamline will provide unique possibilities for high-pressure,high-energy-density physics,warm dense matter,and laser–plasma interaction experiments.Owing to the high repetition rate,it will become possible to obtain considerable improvements in data statistics,in particular,for equation-of-state data sets.The nanosecond beam will be coupled with short sub-picosecond pulses,providing high-resolution diagnostic tools by either irradiating a backlighter target or driving a betatron setup to generate energetic electrons and hard X-rays.