We present a novel scheme for rapid quantitative analysis of debris generated during experiments with solid targets following relativistic laser–plasma interaction at high-power laser facilities.Results are supported...We present a novel scheme for rapid quantitative analysis of debris generated during experiments with solid targets following relativistic laser–plasma interaction at high-power laser facilities.Results are supported by standard analysis techniques.Experimental data indicate that predictions by available modelling for non-mass-limited targets are reasonable,with debris of the order of hundreds ofμg per shot.We detect for the first time two clearly distinct types of debris emitted from the same interaction.A fraction of the debris is ejected directionally,following the target normal(rear and interaction side).The directional debris ejection towards the interaction side is larger than on the side of the target rear.The second type of debris is characterized by a more spherically uniform ejection,albeit with a small asymmetry that favours ejection towards the target rear side.展开更多
Giant electromagnetic pulses(EMP) generated during the interaction of high-power lasers with solid targets can seriously degrade electrical measurements and equipment. EMP emission is caused by the acceleration of hot...Giant electromagnetic pulses(EMP) generated during the interaction of high-power lasers with solid targets can seriously degrade electrical measurements and equipment. EMP emission is caused by the acceleration of hot electrons inside the target, which produce radiation across a wide band from DC to terahertz frequencies. Improved understanding and control of EMP is vital as we enter a new era of high repetition rate, high intensity lasers(e.g. the Extreme Light Infrastructure).We present recent data from the VULCAN laser facility that demonstrates how EMP can be readily and effectively reduced. Characterization of the EMP was achieved using B-dot and D-dot probes that took measurements for a range of different target and laser parameters. We demonstrate that target stalk geometry, material composition, geodesic path length and foil surface area can all play a significant role in the reduction of EMP. A combination of electromagnetic wave and 3 D particle-in-cell simulations is used to inform our conclusions about the effects of stalk geometry on EMP,providing an opportunity for comparison with existing charge separation models.展开更多
This article describes the fabrication of a suite of laser targets by the Target Fabrication group in the Central Laser Facility(CLF), STFC Rutherford Appleton Laboratory for the first academic-access experiment on th...This article describes the fabrication of a suite of laser targets by the Target Fabrication group in the Central Laser Facility(CLF), STFC Rutherford Appleton Laboratory for the first academic-access experiment on the Orion laser facility(Hopps et al., Appl. Opt. 52, 3597–3601(2013)) at Atomic Weapons Establishment(AWE). This experiment, part of the POLAR project(Falize et al., Astrophys. Space Sci. 336, 81–85(2011); Busschaert et al., New J. Phys. 15, 035020(2013)),studied conditions relevant to the radiation-hydrodynamic processes occurring in a remarkable class of astrophysical star systems known as magnetic cataclysmic variables. A large number of complex fabrication technologies and research and development activities were required to field a total of 80 high-specification targets. Target design and fabrication procedures are described and initial alignment and characterization data are discussed.展开更多
基金funding from the European Union’s Horizon 2020 research and innovation programme through the European IMPULSE project under grant agreement No.871161 and LASERLAB-EUROPE V under grant agreement No.871124from grant PDC2021-120933-I00 funded by MCIN/AEI/10.13039/501100011033 and by the European Union Next Generation EU/PRTR+4 种基金from grant PID2021-125389OA-I00 funded by MCIN/AEI/10.13039/501100011033/FEDER,UE and by‘ERDF A way of making Europe’by the European Union and in addition to Unidad de Investigacion Consolidada de la Junta de Castilla y Leon No.CLP087U16The UPM47 campaign was funded through IOSIN,Nucleu PN-IFIN-HH 23-26 Code PN 2321the ELI-NP Phase II,a project co-financed by the Romanian Government and the European Union through the European Regional Development Fund and the Competitiveness Operational Programme(1/07.07.2016,COP,ID 1334)This research was funded,in part,by the French Agence Nationale de la Recherche(ANR),Project No.ANR-22-CE30-0044supported by the Ministry of Youth and Sports of the Czech Republic(Project Nos.LM2023068 and LM2018114(PALS RI)).
文摘We present a novel scheme for rapid quantitative analysis of debris generated during experiments with solid targets following relativistic laser–plasma interaction at high-power laser facilities.Results are supported by standard analysis techniques.Experimental data indicate that predictions by available modelling for non-mass-limited targets are reasonable,with debris of the order of hundreds ofμg per shot.We detect for the first time two clearly distinct types of debris emitted from the same interaction.A fraction of the debris is ejected directionally,following the target normal(rear and interaction side).The directional debris ejection towards the interaction side is larger than on the side of the target rear.The second type of debris is characterized by a more spherically uniform ejection,albeit with a small asymmetry that favours ejection towards the target rear side.
基金funding from EPSRC grants EP/L01663X/1 and EP/L000644/1the Newton UK grant+1 种基金the National Natural Science Foundation of China NSFC/11520101003the LLNL Academic Partnership in ICF
文摘Giant electromagnetic pulses(EMP) generated during the interaction of high-power lasers with solid targets can seriously degrade electrical measurements and equipment. EMP emission is caused by the acceleration of hot electrons inside the target, which produce radiation across a wide band from DC to terahertz frequencies. Improved understanding and control of EMP is vital as we enter a new era of high repetition rate, high intensity lasers(e.g. the Extreme Light Infrastructure).We present recent data from the VULCAN laser facility that demonstrates how EMP can be readily and effectively reduced. Characterization of the EMP was achieved using B-dot and D-dot probes that took measurements for a range of different target and laser parameters. We demonstrate that target stalk geometry, material composition, geodesic path length and foil surface area can all play a significant role in the reduction of EMP. A combination of electromagnetic wave and 3 D particle-in-cell simulations is used to inform our conclusions about the effects of stalk geometry on EMP,providing an opportunity for comparison with existing charge separation models.
文摘This article describes the fabrication of a suite of laser targets by the Target Fabrication group in the Central Laser Facility(CLF), STFC Rutherford Appleton Laboratory for the first academic-access experiment on the Orion laser facility(Hopps et al., Appl. Opt. 52, 3597–3601(2013)) at Atomic Weapons Establishment(AWE). This experiment, part of the POLAR project(Falize et al., Astrophys. Space Sci. 336, 81–85(2011); Busschaert et al., New J. Phys. 15, 035020(2013)),studied conditions relevant to the radiation-hydrodynamic processes occurring in a remarkable class of astrophysical star systems known as magnetic cataclysmic variables. A large number of complex fabrication technologies and research and development activities were required to field a total of 80 high-specification targets. Target design and fabrication procedures are described and initial alignment and characterization data are discussed.