Sudan Khartoum Refinery Co. has selected a unique route featuring delayed coking of crude in connection with the highly sour and high-calcium heavy crude extracted from Sudanese oil block No. 6.The crude oil after pre...Sudan Khartoum Refinery Co. has selected a unique route featuring delayed coking of crude in connection with the highly sour and high-calcium heavy crude extracted from Sudanese oil block No. 6.The crude oil after pretreatment for calcium removal is subjected to coking for removal of acids and metals with the coker products being further processed. The crude oil extracted from Sudanese oil block No. 6contains as high as 13 mg KOH/g of crude in addition to a calcium content of 1600 ppm. This article makes an analysis on problems related with the operation of commercial delayed coking unit for processing of highly sour crude and bring forth measures to solve these problems. The liquid yield resulted from coking of crude oil can reach 82m%, and the petroleum coke can meet the quality requirement for class 3B petroleum coke.展开更多
The influence of yttrium and ytterbium on the catalyticperformance of Pt-Re reforming cata-lysts was studied in a continuous flow pressurized microreactor-chromatograph system and pilot unit. Theresults of micro-react...The influence of yttrium and ytterbium on the catalyticperformance of Pt-Re reforming cata-lysts was studied in a continuous flow pressurized microreactor-chromatograph system and pilot unit. Theresults of micro-reactor test showed that both yttrium and ytterbium could improve the selectivity of Pt-Recatalysts for the conversion ofn-heptane as well as MCP into aromatics, but also suppressed their activityas well. Pilot test results showed that yttrium and ytterbium enhanced both the selectivity and activity ofPt-Re catalysts for naphtha reforming. Yttrium showed more improvement than ytterbium. The perfor-mance difference between microreactor test and pilot test might be due to the difference in improvement ofcatalytic stability of yttrium or ytterbium modified Pt-Re catalysts. Yttrium and ytterbium improved thecoking resistance of yttrium or ytterbium modified Pt-Re catalysts. TEM determination results indicatedthat both yttrium and ytterbium had improved the thermal stability of Pt-Re catalysts.展开更多
文摘Sudan Khartoum Refinery Co. has selected a unique route featuring delayed coking of crude in connection with the highly sour and high-calcium heavy crude extracted from Sudanese oil block No. 6.The crude oil after pretreatment for calcium removal is subjected to coking for removal of acids and metals with the coker products being further processed. The crude oil extracted from Sudanese oil block No. 6contains as high as 13 mg KOH/g of crude in addition to a calcium content of 1600 ppm. This article makes an analysis on problems related with the operation of commercial delayed coking unit for processing of highly sour crude and bring forth measures to solve these problems. The liquid yield resulted from coking of crude oil can reach 82m%, and the petroleum coke can meet the quality requirement for class 3B petroleum coke.
文摘The influence of yttrium and ytterbium on the catalyticperformance of Pt-Re reforming cata-lysts was studied in a continuous flow pressurized microreactor-chromatograph system and pilot unit. Theresults of micro-reactor test showed that both yttrium and ytterbium could improve the selectivity of Pt-Recatalysts for the conversion ofn-heptane as well as MCP into aromatics, but also suppressed their activityas well. Pilot test results showed that yttrium and ytterbium enhanced both the selectivity and activity ofPt-Re catalysts for naphtha reforming. Yttrium showed more improvement than ytterbium. The perfor-mance difference between microreactor test and pilot test might be due to the difference in improvement ofcatalytic stability of yttrium or ytterbium modified Pt-Re catalysts. Yttrium and ytterbium improved thecoking resistance of yttrium or ytterbium modified Pt-Re catalysts. TEM determination results indicatedthat both yttrium and ytterbium had improved the thermal stability of Pt-Re catalysts.