The effect of Mg/Si mass ratio on the microstructure and mechanical properties of Al-Mg-Si cast aluminum alloys under sub-rapid solidification conditions was investigated.This study utilized four different Mg/Si ratio...The effect of Mg/Si mass ratio on the microstructure and mechanical properties of Al-Mg-Si cast aluminum alloys under sub-rapid solidification conditions was investigated.This study utilized four different Mg/Si ratios:2.83,1.91,1.73,and 1.53.To analyze the evolution of the microstructure,particularly the second phase,various techniques were employed:optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectrometry(EDS),and electron backscatter diffraction(EBSD).Additionally,thermodynamic calculations were performed using the Thermal-calc software to further understand the microstructural changes.Results show that as the Mg/Si ratio decreases from 2.83 to 1.53,α-Al grains become more uniformly distributed.Meanwhile,the morphology of the Mg_(2)Si phases changes from skeletal to short stick shapes with a decreasing aspect ratio.An as-cast Al-Mg-Si alloy with a Mg/Si ratio of 1.53 exhibits high strength,achieving an ultimate tensile strength(UTS)of 320.6 MPa and a yield strength(YS)of 249.9 MPa.The cast alloy with a Mg/Si ratio of 2.83exhibits the highest elongation,reaching 5.31%.This superior elongation is attributed to the uniform distribution of Mg_(2)Si phases,which possess a long skeletal shape.Conversely,the alloy with a Mg/Si ratio of 1.53 demonstrates the lowest elongation,primarily due to the central concentration of Mg_(2)Si phases,which are characterized by their short stick shapes.展开更多
The arc characteristics of submerged arc welding (SAW) with stainless steel wire were studied by using Analysator Hannover (AH). The tests were carded out under the same preset arc voltage combined with different ...The arc characteristics of submerged arc welding (SAW) with stainless steel wire were studied by using Analysator Hannover (AH). The tests were carded out under the same preset arc voltage combined with different welding currents. By comparing the probability density distribution (PDD) curves of arc voltage and welding current, the changes were analyzed, the metal transfer mode in SAW was deduced, and the characteristics of a stable arc were summarized. The analysis results show that, with an increase of welding parameters, the short-circuiting peak in the PDD curves of arc voltage decreases gradually until it disappears, and the dominant metal transfer mode changes from flux-wall guided transfer to projected transfer and then to streaming transfer. Moreover, when the PDD curves of arc voltage are both unimodal and generally symmetrical, the greater the peak probability and the smaller the peak span, the more stable the arc becomes.展开更多
In this study,powders of polyethylene oxide(PEO) and lithium perchlorate(Li Cl O4) were used as the raw materials for producing the ionic conduction polymer PEO–Li Cl O4 with different complex-ratios and used for...In this study,powders of polyethylene oxide(PEO) and lithium perchlorate(Li Cl O4) were used as the raw materials for producing the ionic conduction polymer PEO–Li Cl O4 with different complex-ratios and used for anodic bonding through high energy ball milling method,and meanwhile,X-ray diffraction,differential scanning calorimetry(DSC),ultraviolet absorption spectrum test analysis,and other relevant methods were adopted to research the complexation mechanism of PEO and Li Cl O4 and the impact of the ionic conduction polymer with different complex-ratios on the anodic bonding process under the action of the strong static electric field.The research results showed that the crystallization of PEO could be effectively obstructed with increased addition of Li Cl O4,thus increasing the content of PEO–Li Cl O4 in amorphous area and continuously improving the complexation degree and the room-temperature conductivity thereof,and that the higher room-temperature conductivity enabled PEO–Li Cl O4 to better bond with metallic aluminum and have better bonding quality.As the new encapsulating material,such research results will promote the application of new polymer functional materials in micro-electromechanical system(MEMS) components.展开更多
基金supported by the WQ&UCS (Binzhou)Industrialization Research Institute。
文摘The effect of Mg/Si mass ratio on the microstructure and mechanical properties of Al-Mg-Si cast aluminum alloys under sub-rapid solidification conditions was investigated.This study utilized four different Mg/Si ratios:2.83,1.91,1.73,and 1.53.To analyze the evolution of the microstructure,particularly the second phase,various techniques were employed:optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectrometry(EDS),and electron backscatter diffraction(EBSD).Additionally,thermodynamic calculations were performed using the Thermal-calc software to further understand the microstructural changes.Results show that as the Mg/Si ratio decreases from 2.83 to 1.53,α-Al grains become more uniformly distributed.Meanwhile,the morphology of the Mg_(2)Si phases changes from skeletal to short stick shapes with a decreasing aspect ratio.An as-cast Al-Mg-Si alloy with a Mg/Si ratio of 1.53 exhibits high strength,achieving an ultimate tensile strength(UTS)of 320.6 MPa and a yield strength(YS)of 249.9 MPa.The cast alloy with a Mg/Si ratio of 2.83exhibits the highest elongation,reaching 5.31%.This superior elongation is attributed to the uniform distribution of Mg_(2)Si phases,which possess a long skeletal shape.Conversely,the alloy with a Mg/Si ratio of 1.53 demonstrates the lowest elongation,primarily due to the central concentration of Mg_(2)Si phases,which are characterized by their short stick shapes.
基金supported by the National Key Research and Development Program(No.2021YFA0716303)Chinese Academy of Sciences of China(No.ZDBS-LY-JSC023)Ling-Chuang Research Project of the China National Nuclear Corporation。
基金financially supported by the Shanxi Provincial Key Programs for Science and Technology Development (No. 20100321084)Taiyuan Special Foundation for Excellent Talents (No. 20111075)
文摘The arc characteristics of submerged arc welding (SAW) with stainless steel wire were studied by using Analysator Hannover (AH). The tests were carded out under the same preset arc voltage combined with different welding currents. By comparing the probability density distribution (PDD) curves of arc voltage and welding current, the changes were analyzed, the metal transfer mode in SAW was deduced, and the characteristics of a stable arc were summarized. The analysis results show that, with an increase of welding parameters, the short-circuiting peak in the PDD curves of arc voltage decreases gradually until it disappears, and the dominant metal transfer mode changes from flux-wall guided transfer to projected transfer and then to streaming transfer. Moreover, when the PDD curves of arc voltage are both unimodal and generally symmetrical, the greater the peak probability and the smaller the peak span, the more stable the arc becomes.
基金supported by the National Natural Science Foundation of China (No.51275332)the Natural Science Foundation for Young Scientists of Shanxi Province,China (No.2014021025-2)
文摘In this study,powders of polyethylene oxide(PEO) and lithium perchlorate(Li Cl O4) were used as the raw materials for producing the ionic conduction polymer PEO–Li Cl O4 with different complex-ratios and used for anodic bonding through high energy ball milling method,and meanwhile,X-ray diffraction,differential scanning calorimetry(DSC),ultraviolet absorption spectrum test analysis,and other relevant methods were adopted to research the complexation mechanism of PEO and Li Cl O4 and the impact of the ionic conduction polymer with different complex-ratios on the anodic bonding process under the action of the strong static electric field.The research results showed that the crystallization of PEO could be effectively obstructed with increased addition of Li Cl O4,thus increasing the content of PEO–Li Cl O4 in amorphous area and continuously improving the complexation degree and the room-temperature conductivity thereof,and that the higher room-temperature conductivity enabled PEO–Li Cl O4 to better bond with metallic aluminum and have better bonding quality.As the new encapsulating material,such research results will promote the application of new polymer functional materials in micro-electromechanical system(MEMS) components.