The mechanical properties and oxidation resistance of two nickel-based superalloys with and without oxide dispersion strengthened(ODS)phases at different temperatures were studied.The microstructure was investigated b...The mechanical properties and oxidation resistance of two nickel-based superalloys with and without oxide dispersion strengthened(ODS)phases at different temperatures were studied.The microstructure was investigated by scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),and transmission electron microscopy(TEM).The results show that the yield strength of the samples with and without ODS phases at room temperature is 1020 and 324 MPa,respectively.The yield strength model was constructed,and it is found that the contribution of grain boundary strengthening,dislocation strengthening and nanoparticle strengthening of nickel-based ODS superalloy exceeds 83%.As the temperature increases,grain boundary sliding and migration decrease the strength of sample but improve its ductility.Oxidation hinders the ductility of sample and intensifies its fracture,and the maximum elongation of nickel-based ODS superalloy at 800℃ is 47.3%.展开更多
基金supported by the National Natural Science Foundation of China(No.52271177)Leading Talents Project of Scientific and Technological Innovation in Hunan Province,China(No.2021RC4036)+1 种基金the Natural Science Foundation of Hunan Province,China(Nos.2023JJ50172,2020JJ6069)State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology,China。
文摘The mechanical properties and oxidation resistance of two nickel-based superalloys with and without oxide dispersion strengthened(ODS)phases at different temperatures were studied.The microstructure was investigated by scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),and transmission electron microscopy(TEM).The results show that the yield strength of the samples with and without ODS phases at room temperature is 1020 and 324 MPa,respectively.The yield strength model was constructed,and it is found that the contribution of grain boundary strengthening,dislocation strengthening and nanoparticle strengthening of nickel-based ODS superalloy exceeds 83%.As the temperature increases,grain boundary sliding and migration decrease the strength of sample but improve its ductility.Oxidation hinders the ductility of sample and intensifies its fracture,and the maximum elongation of nickel-based ODS superalloy at 800℃ is 47.3%.