We are currently in the midst of a revolution in ageing research, with several dietary, genetic and pharmacological interventions now known to modulate ageing in model organisms. Excitingly, these interventions also a...We are currently in the midst of a revolution in ageing research, with several dietary, genetic and pharmacological interventions now known to modulate ageing in model organisms. Excitingly, these interventions also appear to have beneficial effects on late-life health. For example, dietary restriction (DR) has been shown to slow the incidence of age-associated cardiovascular disease, metabolic disease, cancer and brain ageing in non-human primates and has been shown to improve a range of health indices in humans. While the idea thai DR's ability to extend lifespan is often thought of as being universal, studies in a range of organisms, including yeast, mice and monkeys, suggest that this may not actually be the case. The precise reasons underlying these differential effects of DR on lifespan are currently unclear, but genetic background may be an important factor in how an individual responds to DR. Similarly, recent findings also suggest that the responsiveness of mice to specific genetic or pharmacological interventions that modulate ageing may again be influenced by genetic background. Consequently, while there is a clear driver to develop interventions to improve late-life health and vitality, under- standing precisely how these act in response to particular genotypes is critical if we are to translate these findings to humans. We will consider of the role of genetic background in the efficacy of various lifespan interventions and discuss potential routes of utilising genetic heterogeneity to further understand how particular interventions modulate lifespan and healthspan.展开更多
Energy expenditure is a key variable in the study of ageing, and the fruit fly Drosophila melanogaster is a model organism that has been used to make step changes in our understanding of the ageing process. Standard m...Energy expenditure is a key variable in the study of ageing, and the fruit fly Drosophila melanogaster is a model organism that has been used to make step changes in our understanding of the ageing process. Standard methods for measurement of energy expenditure involve placing individuals in metabolic chambers where their oxygen consumption and CO2 production can be quantified. These measurements require separating individuals from any social context, and may only poorly reflect the environment in which the animals normally live. The doubly-labeled water (DLW) method is an isotope-based technique for measuring energy expenditure which overcomes these problems. However, technical challenges mean that the smallest animals this method has been previously applied to weighed 50-200 mg. We overcame these technical challenges to measure energy demands in Drosophila weighing 0.78 mg. Mass-specific energy expenditure varied between 43 and 65 mW·g^-1. These estimates are considerably higher than estimates using indirect calorimetry of Drosophila in small metabolic chambers (around 18 mW·g^-1). The methodology we have established extends downwards by three orders of magnitude the size of animals that can be measured using DLW. This approach may be of considerable value in future ageing research attempting to understand the genetic and genomic basis of ageing.展开更多
基金supported by the BBSRC(grant No. BB/H012850/2)through the College of Medicine,Veterinary and Life Sciences(University of Glasgow) start-up funds to CS
文摘We are currently in the midst of a revolution in ageing research, with several dietary, genetic and pharmacological interventions now known to modulate ageing in model organisms. Excitingly, these interventions also appear to have beneficial effects on late-life health. For example, dietary restriction (DR) has been shown to slow the incidence of age-associated cardiovascular disease, metabolic disease, cancer and brain ageing in non-human primates and has been shown to improve a range of health indices in humans. While the idea thai DR's ability to extend lifespan is often thought of as being universal, studies in a range of organisms, including yeast, mice and monkeys, suggest that this may not actually be the case. The precise reasons underlying these differential effects of DR on lifespan are currently unclear, but genetic background may be an important factor in how an individual responds to DR. Similarly, recent findings also suggest that the responsiveness of mice to specific genetic or pharmacological interventions that modulate ageing may again be influenced by genetic background. Consequently, while there is a clear driver to develop interventions to improve late-life health and vitality, under- standing precisely how these act in response to particular genotypes is critical if we are to translate these findings to humans. We will consider of the role of genetic background in the efficacy of various lifespan interventions and discuss potential routes of utilising genetic heterogeneity to further understand how particular interventions modulate lifespan and healthspan.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB 13030000) a 1000 talents professorship
文摘Energy expenditure is a key variable in the study of ageing, and the fruit fly Drosophila melanogaster is a model organism that has been used to make step changes in our understanding of the ageing process. Standard methods for measurement of energy expenditure involve placing individuals in metabolic chambers where their oxygen consumption and CO2 production can be quantified. These measurements require separating individuals from any social context, and may only poorly reflect the environment in which the animals normally live. The doubly-labeled water (DLW) method is an isotope-based technique for measuring energy expenditure which overcomes these problems. However, technical challenges mean that the smallest animals this method has been previously applied to weighed 50-200 mg. We overcame these technical challenges to measure energy demands in Drosophila weighing 0.78 mg. Mass-specific energy expenditure varied between 43 and 65 mW·g^-1. These estimates are considerably higher than estimates using indirect calorimetry of Drosophila in small metabolic chambers (around 18 mW·g^-1). The methodology we have established extends downwards by three orders of magnitude the size of animals that can be measured using DLW. This approach may be of considerable value in future ageing research attempting to understand the genetic and genomic basis of ageing.