This review summarizes the recent progress of efficient room temperature phosphorescence(RTP) from pure organic luminogens achieved by crystallization-induced phosphorescence(CIP),with focus on the advances in our...This review summarizes the recent progress of efficient room temperature phosphorescence(RTP) from pure organic luminogens achieved by crystallization-induced phosphorescence(CIP),with focus on the advances in our group.Besides homocrystals,mixed crystals and cocrystals are also discussed.Meanwhile,intriguing RTP emission from the luminogens without conventional chromophores is demonstrated.展开更多
Self-organized titanium dioxide(TiO_(2))nanotubes,which are prepared by electrochemical anodizing,have been widely researched as promising anodes for Liion batteries.Both nanotubular morphology and bulk structure of T...Self-organized titanium dioxide(TiO_(2))nanotubes,which are prepared by electrochemical anodizing,have been widely researched as promising anodes for Liion batteries.Both nanotubular morphology and bulk structure of TiO_(2)nanotubes can be easily changed by adjusting the anodizing and annealing parameters.This is provided to investigate different phenomena by selectively adjusting a specific parameter of the Li^(+)insertion mechanism.In this paper,we reviewed how the morphology and crystallography of TiO_(2)nano tubes influence the electrochemical performance of Li^(+)batteries.In particular,electrochemical performances of amorphous and anatase titanium dioxide nanotube anodes were compared in detail.As we all know,TiO_(2)nanotube anodes have the advantages of nontoxicity,good stability,high safety and large specific surface area,in lithium-ion batteries.However,they suffer from poor electronic conductivity,inferior ion diffusivity and low theoretical capacity(335 mAh·g^(-1)),which limit their practical application.Generally,there are two ways to overcome the shortcomings of titanium dioxide nanotube anodes,including doping and synthesis composites.The achievements and existing problems associated with doped TiO_(2)nanotube anodes and composite material anodes are summarized in the present review.Based on the analysis of lithium insertion mechanism of titanium dioxide nanotube electrodes,the prospects and possible research directions of TiO_(2)anodes in lithiumion batteries are discussed.展开更多
The effects of low-level PES on the overall accuracy of the final surface constructed by using hierarchical construction were investigated with the constructions of a number of global surfaces for the H3 system at UHF...The effects of low-level PES on the overall accuracy of the final surface constructed by using hierarchical construction were investigated with the constructions of a number of global surfaces for the H3 system at UHF (UMP2, DFT-B3LYP, UCCSD(T))/vtz, and UCCSD(T)/avqz levels of theory. The total reaction probabilities for the H+H2 reaction calculated on these surfaces revealed that the accuracy of UCCSD(T)/avqz surface is very close to the well-known BKMP2 surface, while the UCCSD(T)/vtz PES has a slightly higher barrier. In contrast, the low-level theories (UHF, UMP2, DFT-B3LYP) with vtz basis set can only provide a qualitative description of this simplest reaction despite the fact that they are widely used to study reactions in complex systems. On the other hand, although these theories are not accurate on describing the reaction, they can be used to provide the low- level PESs for hierarchical construction of the UCCSD(T)/avqz PES with the number of UCCSD(T)/avqz energies substantially reduced.展开更多
In this review,we introduce the current state of the art of the growth technology of pure,lightly doped,and heavily doped(solid solution)nonlinear gallium selenide(GaSe)crystals that are able to generate broadband emi...In this review,we introduce the current state of the art of the growth technology of pure,lightly doped,and heavily doped(solid solution)nonlinear gallium selenide(GaSe)crystals that are able to generate broadband emission from the near infrared(IR)(0.8 mm)through the mid-and far-IR(terahertz(THz))ranges and further into the millimeter wave(5.64 mm)range.For the first time,we show that appropriate doping is an efficient method controlling a range of the physical properties of GaSe crystals that are responsible for frequency conversion efficiency and exploitation parameters.After appropriate doping,uniform crystals grown by a modified technology with heat field rotation possess up to 3 times lower absorption coefficient in the main transparency window and THz range.Moreover,doping provides the following benefits:raises by up to 5 times the optical damage threshold;almost eliminates two-photon absorption;allows for dispersion control in the THz range independent of the mid-IR dispersion;and enables crystal processing in arbitrary directions due to the strengthened lattice.Finally,doped GaSe demonstrated better usefulness for processing compared with GaSe grown by the conventional technology and up to 15 times higher frequency conversion efficiency.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51473092)the Shanghai Rising-Star Program(No.15QA1402500)the SMC-Chenxing Young Scholar Program of Shanghai Jiao Tong University
文摘This review summarizes the recent progress of efficient room temperature phosphorescence(RTP) from pure organic luminogens achieved by crystallization-induced phosphorescence(CIP),with focus on the advances in our group.Besides homocrystals,mixed crystals and cocrystals are also discussed.Meanwhile,intriguing RTP emission from the luminogens without conventional chromophores is demonstrated.
基金the National Natural Science Foundation of China(No.61376017)the Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University(No.CUSFDH-D-2020094)the Shanghai Sailing Program(No.17YF1400600)。
文摘Self-organized titanium dioxide(TiO_(2))nanotubes,which are prepared by electrochemical anodizing,have been widely researched as promising anodes for Liion batteries.Both nanotubular morphology and bulk structure of TiO_(2)nanotubes can be easily changed by adjusting the anodizing and annealing parameters.This is provided to investigate different phenomena by selectively adjusting a specific parameter of the Li^(+)insertion mechanism.In this paper,we reviewed how the morphology and crystallography of TiO_(2)nano tubes influence the electrochemical performance of Li^(+)batteries.In particular,electrochemical performances of amorphous and anatase titanium dioxide nanotube anodes were compared in detail.As we all know,TiO_(2)nanotube anodes have the advantages of nontoxicity,good stability,high safety and large specific surface area,in lithium-ion batteries.However,they suffer from poor electronic conductivity,inferior ion diffusivity and low theoretical capacity(335 mAh·g^(-1)),which limit their practical application.Generally,there are two ways to overcome the shortcomings of titanium dioxide nanotube anodes,including doping and synthesis composites.The achievements and existing problems associated with doped TiO_(2)nanotube anodes and composite material anodes are summarized in the present review.Based on the analysis of lithium insertion mechanism of titanium dioxide nanotube electrodes,the prospects and possible research directions of TiO_(2)anodes in lithiumion batteries are discussed.
文摘The effects of low-level PES on the overall accuracy of the final surface constructed by using hierarchical construction were investigated with the constructions of a number of global surfaces for the H3 system at UHF (UMP2, DFT-B3LYP, UCCSD(T))/vtz, and UCCSD(T)/avqz levels of theory. The total reaction probabilities for the H+H2 reaction calculated on these surfaces revealed that the accuracy of UCCSD(T)/avqz surface is very close to the well-known BKMP2 surface, while the UCCSD(T)/vtz PES has a slightly higher barrier. In contrast, the low-level theories (UHF, UMP2, DFT-B3LYP) with vtz basis set can only provide a qualitative description of this simplest reaction despite the fact that they are widely used to study reactions in complex systems. On the other hand, although these theories are not accurate on describing the reaction, they can be used to provide the low- level PESs for hierarchical construction of the UCCSD(T)/avqz PES with the number of UCCSD(T)/avqz energies substantially reduced.
基金This work is supported in part by the Visiting Professor Program of State Key Laboratory of Laser Interaction with Matter of Changchun Institute of Optics,Fine Mechanics and Physics CAS,Changchun,China,the Open Fund by State Key Laboratory of Laser Interaction with Matter(No.SKLLIM1012)the RNF(Project No.15-19-10021,physical properties study),the Tomsk State University(8.1.51.2015)+1 种基金Tomsk Regional Common Use Center,with the support of the Russian Ministry of Education and Science(Agreement No.14.594.21.0001,code RFMEFI59414X0001,spectroscopic study)the Presidium SB RAS,Project VIII.80.2.4(optical properties study in THz range).
文摘In this review,we introduce the current state of the art of the growth technology of pure,lightly doped,and heavily doped(solid solution)nonlinear gallium selenide(GaSe)crystals that are able to generate broadband emission from the near infrared(IR)(0.8 mm)through the mid-and far-IR(terahertz(THz))ranges and further into the millimeter wave(5.64 mm)range.For the first time,we show that appropriate doping is an efficient method controlling a range of the physical properties of GaSe crystals that are responsible for frequency conversion efficiency and exploitation parameters.After appropriate doping,uniform crystals grown by a modified technology with heat field rotation possess up to 3 times lower absorption coefficient in the main transparency window and THz range.Moreover,doping provides the following benefits:raises by up to 5 times the optical damage threshold;almost eliminates two-photon absorption;allows for dispersion control in the THz range independent of the mid-IR dispersion;and enables crystal processing in arbitrary directions due to the strengthened lattice.Finally,doped GaSe demonstrated better usefulness for processing compared with GaSe grown by the conventional technology and up to 15 times higher frequency conversion efficiency.