Adjustment of the sowing date is a widely used measure in rice production for adapting to high-temperature conditions.However,the impact of a delayed sowing date(DS)on rice quality may vary by variety and ecological c...Adjustment of the sowing date is a widely used measure in rice production for adapting to high-temperature conditions.However,the impact of a delayed sowing date(DS)on rice quality may vary by variety and ecological conditions.In this study,we conducted experiments using four different sowing dates,the conventional sowing date 1(CS1),CS2(10 d later than CS1),DS1(30 d later than CS1),and DS2(30 d later than CS2),and three rice varieties,i.e.,Yixiangyou 2115,Fyou 498,and Chuanyou 6203.This experiment was conducted at four sites in the Sichuan Basin in 2018 and 2019 to evaluate the infuence of DS on the pasting properties of rice,which are a proxy for the eating and cooking quality(ECQ).In DS1 and DS2,the rice had a signifcantly greater amylose content(AC)but a lower protein content(PC),peak viscosity(PKV),cool paste viscosity(CPV),and hot paste viscosity(HPV)than in CS1 and CS2.Moreover,except for CS2 and DS1 in 2018,DS1 and DS2 led to 2.15-11.19%reductions in breakdown viscosity(BDV)and 23.46-108.47%increases in setback viscosity(SBV).However,the infuence of DS on rice pasting properties varied by study site and rice variety.In 2019,DS1 and DS2 led to BDV reductions of 2.35-9.33,2.61-8.61,10.03-17.78,and 2.06-8.93%,and SBV increases of 2.32-60.93,63.74-144.24,55.46-91.63,and-8.28-65.37%at the Dayi,Anzhou,Nanbu,and Shehong(except for SBV in CS2 and DS1)sites,respectively.DS resulted in greater reductions in PKV,HPV,CPV,and BDV and greater increases in the AC and SBV for Yixiangyou 2115 than for Chuanyou 6203 and Fyou 498.The correlation analysis indicated that PKV and HPV were signifcantly and positively related to the mean,maximum,and minimum temperatures after heading.These temperatures must be greater than 25.9,31.2,and 22.3℃,respectively,to increase the relative BDV and reduce the relative SBV of rice,thereby enhancing ECQ.In conclusion,DS might contribute to a signifcant deterioration in ECQ in machine-transplanted rice in the Sichuan Basin.A mean temperature above 25.9℃ after heading is required to improve the ECQ of rice.展开更多
Imine reductases(IREDs)have been extensively used for the imine reduction and reductive amination to access various amines.However,poor activity and severe substrate/product inhibition limit their widespread applicati...Imine reductases(IREDs)have been extensively used for the imine reduction and reductive amination to access various amines.However,poor activity and severe substrate/product inhibition limit their widespread application in industry.Herein,an engineered IRED from Streptomyces viridochromogenes was developed through four rounds of directed evolution.The engineered SvIRED displayed a significant increase in specific activity to 136.8 U mg^(-1),the highest reported for an IRED to date.Molecular dynamics simulations elucidated the surge in specific activity during mutations.The best mutant can also catalyse the reductive coupling of aldehyde homologs and primary amines with up to 66.9 U mg^(-1).Additionally,we established an in-situ product adsorption system using resin,which significantly alleviated substrate/product inhibition and enhanced substrate loading to 100 g L^(-1).Under optimal conditions,a wide range of chiral 2-aryl-pyrrolidines were successfully produced at high substrate loadings(50-100 g L^(-1))with enantiomeric excess over 99%.The usefulness of this biocatalytic system was further demonstrated by preparation of pharmaceutically relevant chiral 2-aryl pyrrolidines,particularly the decagram-scale synthesis of the key chiral aticaprant intermediate with 90%isolated yield,>99%ee,and 438 g L^(-1) d^(-1) space-time yield.展开更多
The conventional biomarkers are limited due to the extremely high thermal stresses in ultra-deep hydrocarbon reservoirs.The diamondoid with cage structure has excellent thermal stability and is an effective tool for c...The conventional biomarkers are limited due to the extremely high thermal stresses in ultra-deep hydrocarbon reservoirs.The diamondoid with cage structure has excellent thermal stability and is an effective tool for characterizing the ultra-deep hydrocarbon and linking its source.We investigated the distribution of diamondoids in ultra-deep reservoirs including black oils,volatile oils,and condensates.The source-related diamondoids indicate that crude oils are mainly sourced from marine siliceous shale.The bulk characteristics(e.g.color,density,Sat/Aro)of crude oils reveal the variations of thermal maturity:low maturity for black oils,moderate maturity for volatile oils,and high maturity for condensates.Based on regular variations in the thermal maturity of crude oils,the thermal evolution of diamondoids is characterized.The abundance of C_(1)-and C_(2)-alkylated diamantanes increases with increasing maturity,and hydrothermal activity may lead to an abnormal increase in the percentage of C_(3)-alkylated adamantanes.Despite the higher thermal stability of 4-methyldiamantane(4-MD),a more sensitive change in relative abundance with maturity for 1-methyldiamantane(1-MD)among all methyldiamantanes(MDs)is observed.Ethyl diamondoids are thermally less stable and their derived indices can effectively indicate the thermal maturity of ultra-deep hydrocarbons.The applications of commonly maturity-related indices should be cautious(e.g.MDI),whereas the novel methyl-ethyl diamantane index(MEDI)is highly recommended.The combination of high MAI values and low MEDI values most likely reflects the influence of late-charged light hydrocarbons.Overall,multiple charging and in-reservoir mixing of light hydrocarbons and oils with various maturities constrained the present phase states of ultra-deep oil reservoirs.This study gives a new perspective to understanding the fate of molecular evolution and phase states of hydrocarbons in the ultra-deep basins.展开更多
The Sichuan Basin(SCB),China has a high incidence of extremely persistent heavy rainfall(EPHR)events.The EPHR events from 2009 to 2019 in the SCB were mainly concentrated over the northern and northwestern windward sl...The Sichuan Basin(SCB),China has a high incidence of extremely persistent heavy rainfall(EPHR)events.The EPHR events from 2009 to 2019 in the SCB were mainly concentrated over the northern and northwestern windward slopes and the central basin.They occurred from June to September,but especially in July,and peaked at 0300 LST.ERA5 reanalysis data and objective classification were used to investigate the synoptic patterns and their effects.There were three synoptic patterns during EPHR events,all accompanied by a Southwest Vortex.The location and intensity of the Southwest Vortex,thermal forcing of the Tibetan Plateau(TP),and low-level winds can greatly affect the intensity and spatial distribution of EPHR.When the Southwest Vortex was located in the western SCB and there were southerly low-level jets(LLJs),convergence and upslope wind would lead to EPHR over the northwestern or northern windward slopes.If there was no LLJ and the whole SCB was under the center of the Southwest Vortex,nocturnal EPHR was controlled by the internal circulation of the Southwest Vortex and the updraft generated by the thermal forcing of the TP,and the rainfall was weaker.The southeastern entrance of the SCB was a key area where the low-level wind dominated the nocturnal peak of EPHR.The nocturnal strengthened southeasterly wind in the key area is attributable to inertial oscillation,and the topographic friction plays an essential role in transporting momentum and moisture into the basin by generating easterly and northeasterly ageostrophic winds.展开更多
It is still a challenge to develop hierarchically nanostructured catalysts with simple approaches to enhance the low-temperature catalytic activity.Herein,a set of mesoporous Co-Cu binary metal oxides with different m...It is still a challenge to develop hierarchically nanostructured catalysts with simple approaches to enhance the low-temperature catalytic activity.Herein,a set of mesoporous Co-Cu binary metal oxides with different morphologies were successfully prepared via a facile ammonium bicarbonate precipitation method without any templates or surfactants,which were further applied for catalytic removal of carcinogenic toluene.Among the catalysts with different ratios,the CoCu_(0.2)composite oxide presented the best performance,where the temperature required for 90%conversion of toluene was only 237°C at the high weight hour space velocity(WHSV)of 240,000 mL/(gcat·hr).Meanwhile,compared to the related Co-Cu composite oxides prepared by using different precipitants(NaOH and H_(2)C_(2)O_(4)),the NH_(4)HCO_(3)-derived CoCu_(0.2)sample exhibited better catalytic efficiency in toluene oxidation,while the T90 were 22 and 28°C lower than those samples prepared by NaOH andH_(2)C_(2)O_(4)routes,respectively.Based on various characterizations,it could be deduced that the excellent performance was related to the small crystal size(6.7 nm),large specific surface area(77.0 m2/g),hollow hierarchical nanostructure with abundant high valence Co ions and adsorbed oxygen species.In situ DRIFTS further revealed that the possible reaction pathway for the toluene oxidation over CoCu_(0.2)catalyst followed the route of absorbed toluene→benzyl alcohol→benzaldehyde→benzoic acid→carbonate→CO_(2)and H_(2)O.In addition,CoCu_(0.2)sample could keep stable with long-time operation and occur little inactivation under humid condition(5 vol.%water),which revealed that the NH_(4)HCO_(3)-derived CoCu_(0.2)nanocatalyst possessed great potential in industrial applications for VOCs abatement.展开更多
A halophilic bacterium,named Halomonas sp.NEC-1 was isolated from the Nyer Co Salt Lake on the Xizang Plateau,SW China.The strain exhibited a broad pH tolerance range of 5-11,distinguishing it from Halomonas alkaliphi...A halophilic bacterium,named Halomonas sp.NEC-1 was isolated from the Nyer Co Salt Lake on the Xizang Plateau,SW China.The strain exhibited a broad pH tolerance range of 5-11,distinguishing it from Halomonas alkaliphila despite a 99% genetic similarity.Optimal growth conditions,determined through orthogonal experiments,were found to be 37℃,100-g/L salinity,and an initial pH of 6,resulting in a maximum OD_(600) of 7.98±0.06.Halomonas sp.NEC-1 produced 545.43±25.10 mg/L of ectoine under optimal conditions of 75-g/L salinity,40-g/L sodium glutamate,and an initial pH of 6.This production increased to 1388.81±3.69 mg/L after five rounds of hypo-osmotic shocks.During the shocks,ectoine productivity remained stable at approximately 16.29±0.04 to 17.28±0.48 mg/(L·h),representing a 43.40%-52.11% increase compared to the rate without any shock(11.36±1.05 mg/(L·h)).Additionally,the expression of the ectABC gene cluster,related to ectoine synthesis,significantly increased following the shocks,enhancing ectoine production.The ectoine extract demonstrated notable protective effects on Escherichia coli and plasmid DNA.After 10 min of exposure at 60℃,the colony count of E.coli treated with ectoine extract increased by 342% compared to treatment with distilled water.Furthermore,the ectoine extract protected plasmid DNA from 2,2′-Azobis(2-methylpropionamidine)dihydrochloride-induced damage.This study highlights Halomonas sp.NEC-1 is a promising strain for ectoine production and underscores the potential of microbial resources in salt lakes from Xizang region.展开更多
Background:The bacterial biofilm poses a significant challenge to traditional antibiotic therapy.There is a great need to develop novel antibiofilm agents combined with biofilm disrupting and bacteria-killing without ...Background:The bacterial biofilm poses a significant challenge to traditional antibiotic therapy.There is a great need to develop novel antibiofilm agents combined with biofilm disrupting and bacteria-killing without the dependence of antibiotic.Methods:Herein,we prepared ultrasound/magnetic field-responsive ferroferric oxide nanoparticles(Fe_(3)O_(4))/glucose oxidase microbubbles(FGMB)to form a cascade catalytic system for effective removing methicillin-resistant Staphylococcus aureus biofilms.FGMB were prepared through interfacial self-assembly of Fe_(3)O_(4) nanoparticles(NPs)and glucose oxidase(GOx)at the gas-liquid interface stabilized by surfactants.Under ultrasound/magnetic field stimulation,FGMB disrupted biofilm architecture through microbubble collapse-induced microjets and magnetically driven displacement.Simultaneously,ultrasound-triggered rupture of FGMB released GOx and Fe_(3)O_(4) NPs.Glucose can be oxidized by GOx to generate gluconic acid and hydrogen peroxide which was subsequently catalyzed into hydroxyl radicals by Fe_(3)O_(4) NPs,enabling chemical eradication of biofilm-embedded bacteria.Results:Optical microscopy images demonstrated that FGMB have spherical structure with average size of approximately 17μm.FGMB showed a 65.4%decrease in methicillin-resistant Staphylococcus aureus biofilm biomass and 1.1 log bacterial inactivation efficiency(91.2%),suggesting effective biofilm elimination.In vitro experimental results also indicate that FGMB have good biocompatibility.Conclusion:This antibiofilm strategy integrated dual modes of physical biofilm disruption with chemical bacteria-killing shows great potential as a versatile,non-resistant strategy for bacterial biofilm elimination.展开更多
Traumatic spinal cord injury is potentially catastrophic and can lead to permanent disability or even death.China has the largest population of patients with traumatic spinal cord injury.Previous studies of traumatic ...Traumatic spinal cord injury is potentially catastrophic and can lead to permanent disability or even death.China has the largest population of patients with traumatic spinal cord injury.Previous studies of traumatic spinal cord injury in China have mostly been regional in scope;national-level studies have been rare.To the best of our knowledge,no national-level study of treatment status and economic burden has been performed.This retrospective study aimed to examine the epidemiological and clinical features,treatment status,and economic burden of traumatic spinal cord injury in China at the national level.We included 13,465 traumatic spinal cord injury patients who were injured between January 2013 and December 2018 and treated in 30 hospitals in 11 provinces/municipalities representing all geographical divisions of China.Patient epidemiological and clinical features,treatment status,and total and daily costs were recorded.Trends in the percentage of traumatic spinal cord injuries among all hospitalized patients and among patients hospitalized in the orthopedic department and cost of care were assessed by annual percentage change using the Joinpoint Regression Program.The percentage of traumatic spinal cord injuries among all hospitalized patients and among patients hospitalized in the orthopedic department did not significantly change overall(annual percentage change,-0.5%and 2.1%,respectively).A total of 10,053(74.7%)patients underwent surgery.Only 2.8%of patients who underwent surgery did so within 24 hours of injury.A total of 2005(14.9%)patients were treated with high-dose(≥500 mg)methylprednisolone sodium succinate/methylprednisolone(MPSS/MP);615(4.6%)received it within 8 hours.The total cost for acute traumatic spinal cord injury decreased over the study period(-4.7%),while daily cost did not significantly change(1.0%increase).Our findings indicate that public health initiatives should aim at improving hospitals’ability to complete early surgery within 24 hours,which is associated with improved sensorimotor recovery,increasing the awareness rate of clinical guidelines related to high-dose MPSS/MP to reduce the use of the treatment with insufficient evidence.展开更多
Whitespotted conger Conger myriaster is a commercially important species in the seas around China, Korea and Japan. The coastal waters of China serve as an important feeding ground for congers, but the spatio-temporal...Whitespotted conger Conger myriaster is a commercially important species in the seas around China, Korea and Japan. The coastal waters of China serve as an important feeding ground for congers, but the spatio-temporal variations in the fishery and biological characteristics of the population have been rarely evaluated and less well understood in this area. We studied the growth, spawning and feeding characteristics of C. myriaster on the basis of samples collected from October 2016 to April 2017 in the Yellow Sea and East China Sea. A total of 529 specimens were collected, with ages ranging from 1 to 6 years and total length ranging from 132 mm to 834 mm. The parameters of von Bertalanffy growth equation L∞ and k were 1 026 mm and 0.226 a^–1, respectively;the sex ratio was 88:0 (female: male) in the East China Sea and 2.67:1 in the South Yellow Sea;the development stage of ovary ranged from peri-nucleolus stage to secondary yolk globule stage, and the testis of two males was at midmeiotic stage;Crustacean was the major prey for conger of small length, and food source shift to fish with somatic growth. The results showed substantial differences from previous studies in Japan and Korean waters, as well as from China seas in the 1980s, suggesting potential spatiotemporal changes in the biological characteristics of C. myriaster. This study may improve current understanding of the fishery biology of C. myriaster in the Yellow Sea and East China Sea.展开更多
Cloud-to-ground(CG)lightning data and the ECMWF ERA-Interim reanalysis dataset are analyzed to gain insight into the spatiotemporal distribution and synoptic background of winter-season CG flashes between December 201...Cloud-to-ground(CG)lightning data and the ECMWF ERA-Interim reanalysis dataset are analyzed to gain insight into the spatiotemporal distribution and synoptic background of winter-season CG flashes between December 2010 and February 2020 in China.We identify three Winter Lightning Frequent Areas(WLAs):the southwest side of the Yunnan-Guizhou Plateau(WLA1),the east side of the Yunnan-Guizhou Plateau(WLA2),and the Poyang Lake Plain(WLA3).The CG lightning flashes most frequently occur at local midnight and have a monthly peak in February.The CG lightning in WLA1 is mostly generated in non-frontal weather;however,the lightning in WLA2 and WLA3 mostly occurs in frontal systems.The frontal circulation situation is divided into four typical types:transversal trough after high pressure,low vortex,confrontational convergence,and asymptotic convergence.In all typical weather patterns,the lightning occurs downstream of a 500 hPa trough and is accompanied by a southwesterly low-level jet.The convective parameters of winter thunderstorms differ greatly from those of summer thunderstorms.The maximum convective available potential energy(MCAPE)and K-index(KI)are more useful metrics than convective available potential energy(CAPE)and Showalter index(SI)during winter.This study further deepens the understanding of the distribution characteristics of winter CG lightning in China,which motivates further research to improve the ability of winter thunderstorm prediction.展开更多
Mechanical metamaterials can be defined as a class of architected materials that exhibit unprecedented mechanical properties derived from designed artificial architectures rather than their constituent materials.While...Mechanical metamaterials can be defined as a class of architected materials that exhibit unprecedented mechanical properties derived from designed artificial architectures rather than their constituent materials.While macroscale and simple layouts can be realized by conventional top-down manufacturing approaches,many of the sophisticated designs at various length scales remain elusive,due to the lack of adequate manufacturing methods.Recent progress in additive manufacturing(AM)has led to the realization of a myriad of novel metamaterial concepts.AM methods capable of fabricating microscale architectures with high resolution,arbitrary complexity,and high feature fidelity have enabled the rapid development of architected meta materials and drastically reduced the design-computation and experimental-validation cycle.This paper first provides a detailed review of various topologies based on the desired mechanical properties,including stiff,strong,and auxetic(negative Poisson’s ratio)metamaterials,followed by a discussion of the AM technologies capable of fabricating these metamaterials.Finally,we discuss current challenges and recommend future directions for AM and mechanical metamaterials.展开更多
Aerial parts of Xanthium italicum in an air tight container greatly inhibited root elongation of radish, implying that this invasive plant could release biologically active volatile organic compounds (VOCs) into the...Aerial parts of Xanthium italicum in an air tight container greatly inhibited root elongation of radish, implying that this invasive plant could release biologically active volatile organic compounds (VOCs) into the environment to affect other plants' growth. This phenomenon was further studied by evaluating the phytotoxic effects of X. italicum essential oil against two dicot plants, amaranth (Amaranthus mangostanus L.) and lettuce (Lectuca sativa L.), and two monocot plants, wheat (Triticum aestivum Linn) and ryegrass (Lolium multiforum), and analyzing the chemical composition of the oil. Among the 4 test species, amaranth was the most sensitive plant, 0.5μl/mL essential oil application resulted in a 50% reduction on root elongation, and 2.5 μl/mL essential oil almost completely inhibited its seedling growth. Wheat was the least sensitive species, whose root growth was reduced to 36% of control by 5 μl/mL essential oil. The essential oil exerted moderate inhibitory effect on both lettuce and ryegrass. Compared to a commercial herbicide-Harness, X. italicum oil exhibited stronger phytotoxicity on amaranth, lettuce and wheat, but weaker activity on ryegrass. The chemical composition of the essential oil isolated by hydrodistillation from the aerial parts of X. italicum Moretti was analyzed by GC/MS. Thirty two compounds were identified, representing 94.89% of total oil, which was found to be rich in monoterpene hydrocarbons (60.71%). The main constituents of the oil were limonene (51.61%), germacrene B (6.98%), 6-cadinol (5.94%), β-pinene (5.23%), α-caryophyllene (5.1%) and bornyl acetate (3.15%). Bioassay revealed the dominant constituent-limonene, was unlikely the responsible phytotoxic compound due to its low biological activity; rather, there might be other oil constituent(s) that either act alone, or work together, and possibly assisted by synergistic effect, to display the phytotoxic activity. Our results suggested that X. italicum might produce allelopathic VOCs to facilitate its invasion success. This is the first report on the phytotoxic activity and the chemical composition of the essential oil of X. itaficum Moretti from China.展开更多
High piezoelectric properties and superior thermal stability are both important indicators of piezoelectric ceramics serving at high temperature.However,since these properties are usually mutually exclusive,high perfo...High piezoelectric properties and superior thermal stability are both important indicators of piezoelectric ceramics serving at high temperature.However,since these properties are usually mutually exclusive,high performance and superior thermal stability are hard to achieve simultaneously.Here we report that a high piezoelectricity(d_(33)∼562 pC/N)and superior thermal stability(the variation is within 7%from 20 to 330℃)were both achieved in 0.4 mol%ZnO-doped 0.02Pb(Sb_(1/2)Nb_(1/2))-0.51PbZrO_(3)-0.47PbTiO_(3) by high-temperature poling.Compared with traditional poling method,high-temperature poling method forms a small-sized and highly oriented domain structure,which can effectively improve the piezoelectric and dielectric properties of piezoelectric ceramics.At the same time,the enhanced pinning effect of defect ions and stabilized domain structure due to high-temperature poling also contribute to the superior temperature stability of the piezoelectric and dielectric properties.This work provides an effective method for designing piezoelectric materials with high performance and good temperature stability for high temperature sensor applications.展开更多
Physical metallurgical(PM)and data-driven approaches can be independently applied to alloy design.Steel technology is a field of physical metallurgy around which some of the most comprehensive understanding has been d...Physical metallurgical(PM)and data-driven approaches can be independently applied to alloy design.Steel technology is a field of physical metallurgy around which some of the most comprehensive understanding has been developed,with vast models on the relationship between composition,processing,microstructure and properties.They have been applied to the design of new steel alloys in the pursuit of grades of improved properties.With the advent of rapid computing and low-cost data storage,a wealth of data has become available to a suite of modelling techniques referred to as machine learning(ML).ML is being emergingly applied in materials discovery while it requires data mining with its adoption being limited by insufficient high-quality datasets,often leading to unrealistic materials design predictions outside the boundaries of the intended properties.It is therefore required to appraise the strength and weaknesses of PM and ML approach,to assess the real design power of each towards designing novel steel grades.This work incorporates models and datasets from well-established literature on marageing steels.Combining genetic algorithm(GA)with PM models to optimise the parameters adopted for each dataset to maximise the prediction accuracy of PM models,and the results were compared with ML models.The results indicate that PM approaches provide a clearer picture of the overall composition-microstructureproperties relationship but are highly sensitive to the alloy system and hence lack on exploration ability of new domains.ML conversely provides little explicit physical insight whilst yielding a stronger prediction accuracy for large-scale data.Hybrid PM/ML approaches provide solutions maximising accuracy,while leading to a clearer physical picture and the desired properties.展开更多
The applicability of sequence stratigraphic models to continental fluvial successions has long been topic for debate. To improve our understanding of how fluvial architectures record responses to changes in the ratio ...The applicability of sequence stratigraphic models to continental fluvial successions has long been topic for debate. To improve our understanding of how fluvial architectures record responses to changes in the ratio between accommodation rate and sediment-supply rate (A/S), two case studies are analyzed, including a densely drilled subsurface fluvial reservoir imaged with a seismic cube, and an outcropping fluvial succession. The subsurface dataset provides a larger, three-dimensional perspective, whereas the outcrop dataset enables observation at higher resolution. On the basis of both datasets, channel-body density, channel-body stacking patterns and their formative river types are interpreted at different scales, and how these may reflect responses to A/S change (the rate of accommodation creation relative to the rate of sediment supply) are discussed. The results indicate that (i) channel-body stacking patterns undergo four evolutionary stages along with the A/S increase, i.e., multi-story, mixed multi- and two-story, two-story, and isolated patterns;(ii) channel-body density decreases along with the channel-body stacking patterns varying from multi-story to isolated;(iii) formative rivers types are interpreted as evolving from braided planforms to braided-meandering planforms and then to meandering ones, with the increase of A/S.展开更多
With the wide application of electronic hardware in aircraft such as air-to-ground communication,satellite communication,positioning system and so on,aircraft hardware is facing great secure pressure.Focusing on the s...With the wide application of electronic hardware in aircraft such as air-to-ground communication,satellite communication,positioning system and so on,aircraft hardware is facing great secure pressure.Focusing on the secure problem of aircraft hardware,this paper proposes a supervisory control architecture based on secure System-on-a-Chip(So C)system.The proposed architecture is attack-immune and trustworthy,which can support trusted escrow application and Dynamic Integrity Measurement(DIM)without interference.This architecture is characterized by a Trusted Monitoring System(TMS)hardware isolated from the Main Processor System(MPS),a secure access channel from TMS to the running memory of the MPS,and the channel is unidirectional.Based on this architecture,the DIM program running on TMS is used to measure and call the Lightweight Measurement Agent(LMA)program running on MPS.By this method,the Operating System(OS)kernel,key software and data of the MPS can be dynamically measured without disturbance,which makes it difficult for adversaries to attack through software.Besides,this architecture has been fully verified on FPGA prototype system.Compared with the existing systems,our architecture achieves higher security and is more efficient on DIM,which can fully supervise the running of application and aircraft hardware OS.展开更多
The complete mitogenome of Parachiloglanis hodgarti was sequenced and characterized,which is the first mitogenome of the genus Parachiloglanis within Sisoridae.The mitogenome is 16511-bp long and included 13 protein-c...The complete mitogenome of Parachiloglanis hodgarti was sequenced and characterized,which is the first mitogenome of the genus Parachiloglanis within Sisoridae.The mitogenome is 16511-bp long and included 13 protein-coding genes,22 transfer RNAs,two ribosomal RNAs,and one control region.The genome composition was A+T biased(58.64%)and exhibited a positive AT-skew(0.095)and a negative GC-skew(-0.283).Compared with other Sisoridae fishes,the characteristics of nucleotide skews,codon usage,and amino acid usage of the P.hodgarti mitogenome are more similar to those of non-Glyptosternoid fishes.Furthermore,the phylogenetic trees show that Sisoridae fishes fall into four major clades and P.hodgarti(CladeⅠ)is basal to the Sisoridae family,forming a sister clade to the Glyptosternoids(CladeⅣ).The topological structures constructed in this study raised doubts over the traditional classification system.These results will help better understand the feature s of the P.hodgarti mitogenome and provide a reference for further phylogenetic research on Sisoridae species.展开更多
The cognitive processing mechanism of humor refers to how the system of neural circuitry and pathways in the brain deals with the incongruity in a humorous manner. The past research has revealed different stages and c...The cognitive processing mechanism of humor refers to how the system of neural circuitry and pathways in the brain deals with the incongruity in a humorous manner. The past research has revealed different stages and corresponding functional brain activities involved in humor-processing in terms of time and space dimensions, highlighting the effects of the time windows of about 400 ms, 600 ms, and 900 ms. However, much less is known about humor processing in light of the frequency dimension. A total of 36 Chinese participants were recruited in this experiment, with Chinese jokes, nonjokes, and nonsensical sentences used as the stimuli. The experimental results showed that there were significant differences among conditions in the P200 effect, which signified that the incongruity detection had already been integrated and perceived at about 200 ms, prior to the semantic integration at about 400 ms. This pre-processing is specific to Chinese verbal jokes due to the simultaneous involvement of both orthographic and phonologic parts in processing Chinese characters. The analysis on the frequency dimension indicated that beta’s power particularly reflected the characteristics of different stages in Chinese verbal humor processing. Jokes’ and nonsensical sentences’ relative power changes on the beta band ranked significantly higher than that of nonjokes at about 200 ms, which suggested the existence of more difficulties in meaning construction in pre-processing the incongruities. This indicated a continuity between the analysis of event related potential (ERP) components and neural oscillations and revealed the key role of the beta frequency band in Chinese verbal joke processing.展开更多
Flower development and plant architecture determine the efficiency of mechanized harvest and seed yield in Brassica napus.Although TERMINAL FLOWER 1(AtTFL1)is a regulator of flower development in Arabidopsis thaliana,...Flower development and plant architecture determine the efficiency of mechanized harvest and seed yield in Brassica napus.Although TERMINAL FLOWER 1(AtTFL1)is a regulator of flower development in Arabidopsis thaliana,the function and regulatory mechanism of TFL1 orthologs in B.napus remains unclear.Six BnTFL1 paralogs in the genome of the B.napus inbred line‘K407’showed steadily increasing expression during vernalization.CRISPR/Cas-induced mutagenesis of up to four BnTFL1 paralogs resulted in early flowering and alteration of plant architecture,whereas seed yield was not altered in BnTFL1 single,double,or triple mutants.Six BnTFL1 paralogs,but not BnaA02.TFL1,showed an additive and conserved effect on regulating flowering time,total and terminal flower number,and plant architecture.BnaA10.TFL1 regulates flower development by interacting with BnaA08.FD through the protein BnaA05.GF14nu,resulting in the transcriptional repression of floral integrator and floral meristem identity genes.These findings about the regulatory network controlling flower development and plant architecture present a promising route to modifying these traits in B.napus.展开更多
In 2018,a total of US$166 billion global economic losses and a new high of 55.3 Gt of CO_(2)equivalent emission were generated by 831 climate-related extreme events.As the world’s largest CO_(2)emitter,we reported Ch...In 2018,a total of US$166 billion global economic losses and a new high of 55.3 Gt of CO_(2)equivalent emission were generated by 831 climate-related extreme events.As the world’s largest CO_(2)emitter,we reported China’s recent progresses and pitfalls in climate actions to achieve climate mitigation targets(i.e.,limit warming to 1.5-2°C above the pre-industrial level).We first summarized China’s integrated actions(2015 onwards)that benefit both climate change mitigation and Sustainable Development Goals(SDGs).These projects include re-structuring organizations,establishing working goals and actions,amending laws and regulations at national level,as well as increasing social awareness at community level.We then pointed out the shortcomings in different regions and sectors.Based on these analyses,we proposed five recommendations to help China improving its climate policy strategies,which include:1)restructuring the economy to balance short-term and long-term conflicts;2)developing circular economy with recycling mechanism and infrastructure;3)building up unified national standards and more accurate indicators;4)completing market mechanism for green economy and encouraging green consumption;and 5)enhancing technology innovations and local incentives via bottom-up actions.展开更多
基金supported by the National Natural Science Foundation of China(U20A2022 and 32372217)the National Key Research and Development Program of China(2022YFD2300700)the Free Exploration Program of State Key Laboratory of Crop Gene Exploration and Utilization in Sichuan Basin,China(SKL-ZY202216)。
文摘Adjustment of the sowing date is a widely used measure in rice production for adapting to high-temperature conditions.However,the impact of a delayed sowing date(DS)on rice quality may vary by variety and ecological conditions.In this study,we conducted experiments using four different sowing dates,the conventional sowing date 1(CS1),CS2(10 d later than CS1),DS1(30 d later than CS1),and DS2(30 d later than CS2),and three rice varieties,i.e.,Yixiangyou 2115,Fyou 498,and Chuanyou 6203.This experiment was conducted at four sites in the Sichuan Basin in 2018 and 2019 to evaluate the infuence of DS on the pasting properties of rice,which are a proxy for the eating and cooking quality(ECQ).In DS1 and DS2,the rice had a signifcantly greater amylose content(AC)but a lower protein content(PC),peak viscosity(PKV),cool paste viscosity(CPV),and hot paste viscosity(HPV)than in CS1 and CS2.Moreover,except for CS2 and DS1 in 2018,DS1 and DS2 led to 2.15-11.19%reductions in breakdown viscosity(BDV)and 23.46-108.47%increases in setback viscosity(SBV).However,the infuence of DS on rice pasting properties varied by study site and rice variety.In 2019,DS1 and DS2 led to BDV reductions of 2.35-9.33,2.61-8.61,10.03-17.78,and 2.06-8.93%,and SBV increases of 2.32-60.93,63.74-144.24,55.46-91.63,and-8.28-65.37%at the Dayi,Anzhou,Nanbu,and Shehong(except for SBV in CS2 and DS1)sites,respectively.DS resulted in greater reductions in PKV,HPV,CPV,and BDV and greater increases in the AC and SBV for Yixiangyou 2115 than for Chuanyou 6203 and Fyou 498.The correlation analysis indicated that PKV and HPV were signifcantly and positively related to the mean,maximum,and minimum temperatures after heading.These temperatures must be greater than 25.9,31.2,and 22.3℃,respectively,to increase the relative BDV and reduce the relative SBV of rice,thereby enhancing ECQ.In conclusion,DS might contribute to a signifcant deterioration in ECQ in machine-transplanted rice in the Sichuan Basin.A mean temperature above 25.9℃ after heading is required to improve the ECQ of rice.
文摘Imine reductases(IREDs)have been extensively used for the imine reduction and reductive amination to access various amines.However,poor activity and severe substrate/product inhibition limit their widespread application in industry.Herein,an engineered IRED from Streptomyces viridochromogenes was developed through four rounds of directed evolution.The engineered SvIRED displayed a significant increase in specific activity to 136.8 U mg^(-1),the highest reported for an IRED to date.Molecular dynamics simulations elucidated the surge in specific activity during mutations.The best mutant can also catalyse the reductive coupling of aldehyde homologs and primary amines with up to 66.9 U mg^(-1).Additionally,we established an in-situ product adsorption system using resin,which significantly alleviated substrate/product inhibition and enhanced substrate loading to 100 g L^(-1).Under optimal conditions,a wide range of chiral 2-aryl-pyrrolidines were successfully produced at high substrate loadings(50-100 g L^(-1))with enantiomeric excess over 99%.The usefulness of this biocatalytic system was further demonstrated by preparation of pharmaceutically relevant chiral 2-aryl pyrrolidines,particularly the decagram-scale synthesis of the key chiral aticaprant intermediate with 90%isolated yield,>99%ee,and 438 g L^(-1) d^(-1) space-time yield.
基金supported by the National Natural Science Foundation of China(Grant No.U20B6001,41472108)。
文摘The conventional biomarkers are limited due to the extremely high thermal stresses in ultra-deep hydrocarbon reservoirs.The diamondoid with cage structure has excellent thermal stability and is an effective tool for characterizing the ultra-deep hydrocarbon and linking its source.We investigated the distribution of diamondoids in ultra-deep reservoirs including black oils,volatile oils,and condensates.The source-related diamondoids indicate that crude oils are mainly sourced from marine siliceous shale.The bulk characteristics(e.g.color,density,Sat/Aro)of crude oils reveal the variations of thermal maturity:low maturity for black oils,moderate maturity for volatile oils,and high maturity for condensates.Based on regular variations in the thermal maturity of crude oils,the thermal evolution of diamondoids is characterized.The abundance of C_(1)-and C_(2)-alkylated diamantanes increases with increasing maturity,and hydrothermal activity may lead to an abnormal increase in the percentage of C_(3)-alkylated adamantanes.Despite the higher thermal stability of 4-methyldiamantane(4-MD),a more sensitive change in relative abundance with maturity for 1-methyldiamantane(1-MD)among all methyldiamantanes(MDs)is observed.Ethyl diamondoids are thermally less stable and their derived indices can effectively indicate the thermal maturity of ultra-deep hydrocarbons.The applications of commonly maturity-related indices should be cautious(e.g.MDI),whereas the novel methyl-ethyl diamantane index(MEDI)is highly recommended.The combination of high MAI values and low MEDI values most likely reflects the influence of late-charged light hydrocarbons.Overall,multiple charging and in-reservoir mixing of light hydrocarbons and oils with various maturities constrained the present phase states of ultra-deep oil reservoirs.This study gives a new perspective to understanding the fate of molecular evolution and phase states of hydrocarbons in the ultra-deep basins.
基金supported by the National Natural Science Foundation of China(Grant Nos.42330610 and 42075010)。
文摘The Sichuan Basin(SCB),China has a high incidence of extremely persistent heavy rainfall(EPHR)events.The EPHR events from 2009 to 2019 in the SCB were mainly concentrated over the northern and northwestern windward slopes and the central basin.They occurred from June to September,but especially in July,and peaked at 0300 LST.ERA5 reanalysis data and objective classification were used to investigate the synoptic patterns and their effects.There were three synoptic patterns during EPHR events,all accompanied by a Southwest Vortex.The location and intensity of the Southwest Vortex,thermal forcing of the Tibetan Plateau(TP),and low-level winds can greatly affect the intensity and spatial distribution of EPHR.When the Southwest Vortex was located in the western SCB and there were southerly low-level jets(LLJs),convergence and upslope wind would lead to EPHR over the northwestern or northern windward slopes.If there was no LLJ and the whole SCB was under the center of the Southwest Vortex,nocturnal EPHR was controlled by the internal circulation of the Southwest Vortex and the updraft generated by the thermal forcing of the TP,and the rainfall was weaker.The southeastern entrance of the SCB was a key area where the low-level wind dominated the nocturnal peak of EPHR.The nocturnal strengthened southeasterly wind in the key area is attributable to inertial oscillation,and the topographic friction plays an essential role in transporting momentum and moisture into the basin by generating easterly and northeasterly ageostrophic winds.
基金supported by the National Natural Science Foundation of China(No.22072096).
文摘It is still a challenge to develop hierarchically nanostructured catalysts with simple approaches to enhance the low-temperature catalytic activity.Herein,a set of mesoporous Co-Cu binary metal oxides with different morphologies were successfully prepared via a facile ammonium bicarbonate precipitation method without any templates or surfactants,which were further applied for catalytic removal of carcinogenic toluene.Among the catalysts with different ratios,the CoCu_(0.2)composite oxide presented the best performance,where the temperature required for 90%conversion of toluene was only 237°C at the high weight hour space velocity(WHSV)of 240,000 mL/(gcat·hr).Meanwhile,compared to the related Co-Cu composite oxides prepared by using different precipitants(NaOH and H_(2)C_(2)O_(4)),the NH_(4)HCO_(3)-derived CoCu_(0.2)sample exhibited better catalytic efficiency in toluene oxidation,while the T90 were 22 and 28°C lower than those samples prepared by NaOH andH_(2)C_(2)O_(4)routes,respectively.Based on various characterizations,it could be deduced that the excellent performance was related to the small crystal size(6.7 nm),large specific surface area(77.0 m2/g),hollow hierarchical nanostructure with abundant high valence Co ions and adsorbed oxygen species.In situ DRIFTS further revealed that the possible reaction pathway for the toluene oxidation over CoCu_(0.2)catalyst followed the route of absorbed toluene→benzyl alcohol→benzaldehyde→benzoic acid→carbonate→CO_(2)and H_(2)O.In addition,CoCu_(0.2)sample could keep stable with long-time operation and occur little inactivation under humid condition(5 vol.%water),which revealed that the NH_(4)HCO_(3)-derived CoCu_(0.2)nanocatalyst possessed great potential in industrial applications for VOCs abatement.
基金Supported by the Key Science and Technology Program of Xizang Autonomous Region(No.XZ202301ZY0012N)the Key Fisheries Resources and Environmental Survey Project in the Southwest Region(No.CJW2023034)the National Natural Science Foundation of China(No.42306106)。
文摘A halophilic bacterium,named Halomonas sp.NEC-1 was isolated from the Nyer Co Salt Lake on the Xizang Plateau,SW China.The strain exhibited a broad pH tolerance range of 5-11,distinguishing it from Halomonas alkaliphila despite a 99% genetic similarity.Optimal growth conditions,determined through orthogonal experiments,were found to be 37℃,100-g/L salinity,and an initial pH of 6,resulting in a maximum OD_(600) of 7.98±0.06.Halomonas sp.NEC-1 produced 545.43±25.10 mg/L of ectoine under optimal conditions of 75-g/L salinity,40-g/L sodium glutamate,and an initial pH of 6.This production increased to 1388.81±3.69 mg/L after five rounds of hypo-osmotic shocks.During the shocks,ectoine productivity remained stable at approximately 16.29±0.04 to 17.28±0.48 mg/(L·h),representing a 43.40%-52.11% increase compared to the rate without any shock(11.36±1.05 mg/(L·h)).Additionally,the expression of the ectABC gene cluster,related to ectoine synthesis,significantly increased following the shocks,enhancing ectoine production.The ectoine extract demonstrated notable protective effects on Escherichia coli and plasmid DNA.After 10 min of exposure at 60℃,the colony count of E.coli treated with ectoine extract increased by 342% compared to treatment with distilled water.Furthermore,the ectoine extract protected plasmid DNA from 2,2′-Azobis(2-methylpropionamidine)dihydrochloride-induced damage.This study highlights Halomonas sp.NEC-1 is a promising strain for ectoine production and underscores the potential of microbial resources in salt lakes from Xizang region.
基金supported by the National Natural Science Foundation of China(22375101)the Natural Science of Colleges and Universities in Jiangsu Province(24KJB430027).
文摘Background:The bacterial biofilm poses a significant challenge to traditional antibiotic therapy.There is a great need to develop novel antibiofilm agents combined with biofilm disrupting and bacteria-killing without the dependence of antibiotic.Methods:Herein,we prepared ultrasound/magnetic field-responsive ferroferric oxide nanoparticles(Fe_(3)O_(4))/glucose oxidase microbubbles(FGMB)to form a cascade catalytic system for effective removing methicillin-resistant Staphylococcus aureus biofilms.FGMB were prepared through interfacial self-assembly of Fe_(3)O_(4) nanoparticles(NPs)and glucose oxidase(GOx)at the gas-liquid interface stabilized by surfactants.Under ultrasound/magnetic field stimulation,FGMB disrupted biofilm architecture through microbubble collapse-induced microjets and magnetically driven displacement.Simultaneously,ultrasound-triggered rupture of FGMB released GOx and Fe_(3)O_(4) NPs.Glucose can be oxidized by GOx to generate gluconic acid and hydrogen peroxide which was subsequently catalyzed into hydroxyl radicals by Fe_(3)O_(4) NPs,enabling chemical eradication of biofilm-embedded bacteria.Results:Optical microscopy images demonstrated that FGMB have spherical structure with average size of approximately 17μm.FGMB showed a 65.4%decrease in methicillin-resistant Staphylococcus aureus biofilm biomass and 1.1 log bacterial inactivation efficiency(91.2%),suggesting effective biofilm elimination.In vitro experimental results also indicate that FGMB have good biocompatibility.Conclusion:This antibiofilm strategy integrated dual modes of physical biofilm disruption with chemical bacteria-killing shows great potential as a versatile,non-resistant strategy for bacterial biofilm elimination.
基金supported by the National Key Research and Development Project,No.2019YFA0112100(to SF).
文摘Traumatic spinal cord injury is potentially catastrophic and can lead to permanent disability or even death.China has the largest population of patients with traumatic spinal cord injury.Previous studies of traumatic spinal cord injury in China have mostly been regional in scope;national-level studies have been rare.To the best of our knowledge,no national-level study of treatment status and economic burden has been performed.This retrospective study aimed to examine the epidemiological and clinical features,treatment status,and economic burden of traumatic spinal cord injury in China at the national level.We included 13,465 traumatic spinal cord injury patients who were injured between January 2013 and December 2018 and treated in 30 hospitals in 11 provinces/municipalities representing all geographical divisions of China.Patient epidemiological and clinical features,treatment status,and total and daily costs were recorded.Trends in the percentage of traumatic spinal cord injuries among all hospitalized patients and among patients hospitalized in the orthopedic department and cost of care were assessed by annual percentage change using the Joinpoint Regression Program.The percentage of traumatic spinal cord injuries among all hospitalized patients and among patients hospitalized in the orthopedic department did not significantly change overall(annual percentage change,-0.5%and 2.1%,respectively).A total of 10,053(74.7%)patients underwent surgery.Only 2.8%of patients who underwent surgery did so within 24 hours of injury.A total of 2005(14.9%)patients were treated with high-dose(≥500 mg)methylprednisolone sodium succinate/methylprednisolone(MPSS/MP);615(4.6%)received it within 8 hours.The total cost for acute traumatic spinal cord injury decreased over the study period(-4.7%),while daily cost did not significantly change(1.0%increase).Our findings indicate that public health initiatives should aim at improving hospitals’ability to complete early surgery within 24 hours,which is associated with improved sensorimotor recovery,increasing the awareness rate of clinical guidelines related to high-dose MPSS/MP to reduce the use of the treatment with insufficient evidence.
基金The National Natural Science Foundation of China under contract No.31772852the Fundamental Research Funds for the Central Universities under contract No.201562030
文摘Whitespotted conger Conger myriaster is a commercially important species in the seas around China, Korea and Japan. The coastal waters of China serve as an important feeding ground for congers, but the spatio-temporal variations in the fishery and biological characteristics of the population have been rarely evaluated and less well understood in this area. We studied the growth, spawning and feeding characteristics of C. myriaster on the basis of samples collected from October 2016 to April 2017 in the Yellow Sea and East China Sea. A total of 529 specimens were collected, with ages ranging from 1 to 6 years and total length ranging from 132 mm to 834 mm. The parameters of von Bertalanffy growth equation L∞ and k were 1 026 mm and 0.226 a^–1, respectively;the sex ratio was 88:0 (female: male) in the East China Sea and 2.67:1 in the South Yellow Sea;the development stage of ovary ranged from peri-nucleolus stage to secondary yolk globule stage, and the testis of two males was at midmeiotic stage;Crustacean was the major prey for conger of small length, and food source shift to fish with somatic growth. The results showed substantial differences from previous studies in Japan and Korean waters, as well as from China seas in the 1980s, suggesting potential spatiotemporal changes in the biological characteristics of C. myriaster. This study may improve current understanding of the fishery biology of C. myriaster in the Yellow Sea and East China Sea.
基金supported by the National Natural Science Foundation of China(Grant No.42075010)the National Key R&D Program of China(Grant No.2018YFC1507304,2018YFC1507402)。
文摘Cloud-to-ground(CG)lightning data and the ECMWF ERA-Interim reanalysis dataset are analyzed to gain insight into the spatiotemporal distribution and synoptic background of winter-season CG flashes between December 2010 and February 2020 in China.We identify three Winter Lightning Frequent Areas(WLAs):the southwest side of the Yunnan-Guizhou Plateau(WLA1),the east side of the Yunnan-Guizhou Plateau(WLA2),and the Poyang Lake Plain(WLA3).The CG lightning flashes most frequently occur at local midnight and have a monthly peak in February.The CG lightning in WLA1 is mostly generated in non-frontal weather;however,the lightning in WLA2 and WLA3 mostly occurs in frontal systems.The frontal circulation situation is divided into four typical types:transversal trough after high pressure,low vortex,confrontational convergence,and asymptotic convergence.In all typical weather patterns,the lightning occurs downstream of a 500 hPa trough and is accompanied by a southwesterly low-level jet.The convective parameters of winter thunderstorms differ greatly from those of summer thunderstorms.The maximum convective available potential energy(MCAPE)and K-index(KI)are more useful metrics than convective available potential energy(CAPE)and Showalter index(SI)during winter.This study further deepens the understanding of the distribution characteristics of winter CG lightning in China,which motivates further research to improve the ability of winter thunderstorm prediction.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(2021B0301030001)project supported by the Space Utilization System of China Manned Space Engineering(KJZ-YY-WCL03)+6 种基金National Key Laboratory Foundation of Science and Technology on Materials under Shock and Impact(6142902210109)National Key Research and Development Program of China(2018YFB0905600 and 2017YFB0310400)National Natural Science Foundation of China(51472188 and 51521001)Natural Research Funds of Hubei Province(2016CFB583)Natural Research Funds of Shenzhen,Fundamental Research Funds for the Central Universities China,State Key Laboratory of Advanced Electromagnetic Engineering and Technology(Huazhong University of Science and Technology)the Science and Technology Project of the Global Energy Interconnection Research Institute Co.,Ltd.(SGGR0000WLJS1801080)the 111 Project(B13035)。
文摘Mechanical metamaterials can be defined as a class of architected materials that exhibit unprecedented mechanical properties derived from designed artificial architectures rather than their constituent materials.While macroscale and simple layouts can be realized by conventional top-down manufacturing approaches,many of the sophisticated designs at various length scales remain elusive,due to the lack of adequate manufacturing methods.Recent progress in additive manufacturing(AM)has led to the realization of a myriad of novel metamaterial concepts.AM methods capable of fabricating microscale architectures with high resolution,arbitrary complexity,and high feature fidelity have enabled the rapid development of architected meta materials and drastically reduced the design-computation and experimental-validation cycle.This paper first provides a detailed review of various topologies based on the desired mechanical properties,including stiff,strong,and auxetic(negative Poisson’s ratio)metamaterials,followed by a discussion of the AM technologies capable of fabricating these metamaterials.Finally,we discuss current challenges and recommend future directions for AM and mechanical metamaterials.
基金financially supported by the International Science and Technology Cooperation Program of China (2010 DFA 92720-06)the One Hundred Person Project of the Chinese Academy of Sciences granted to Chi ZHANGthe West Light Foundation of the Chinese Academy of Sciences granted to Hua SHAO (LHXZ201202)
文摘Aerial parts of Xanthium italicum in an air tight container greatly inhibited root elongation of radish, implying that this invasive plant could release biologically active volatile organic compounds (VOCs) into the environment to affect other plants' growth. This phenomenon was further studied by evaluating the phytotoxic effects of X. italicum essential oil against two dicot plants, amaranth (Amaranthus mangostanus L.) and lettuce (Lectuca sativa L.), and two monocot plants, wheat (Triticum aestivum Linn) and ryegrass (Lolium multiforum), and analyzing the chemical composition of the oil. Among the 4 test species, amaranth was the most sensitive plant, 0.5μl/mL essential oil application resulted in a 50% reduction on root elongation, and 2.5 μl/mL essential oil almost completely inhibited its seedling growth. Wheat was the least sensitive species, whose root growth was reduced to 36% of control by 5 μl/mL essential oil. The essential oil exerted moderate inhibitory effect on both lettuce and ryegrass. Compared to a commercial herbicide-Harness, X. italicum oil exhibited stronger phytotoxicity on amaranth, lettuce and wheat, but weaker activity on ryegrass. The chemical composition of the essential oil isolated by hydrodistillation from the aerial parts of X. italicum Moretti was analyzed by GC/MS. Thirty two compounds were identified, representing 94.89% of total oil, which was found to be rich in monoterpene hydrocarbons (60.71%). The main constituents of the oil were limonene (51.61%), germacrene B (6.98%), 6-cadinol (5.94%), β-pinene (5.23%), α-caryophyllene (5.1%) and bornyl acetate (3.15%). Bioassay revealed the dominant constituent-limonene, was unlikely the responsible phytotoxic compound due to its low biological activity; rather, there might be other oil constituent(s) that either act alone, or work together, and possibly assisted by synergistic effect, to display the phytotoxic activity. Our results suggested that X. italicum might produce allelopathic VOCs to facilitate its invasion success. This is the first report on the phytotoxic activity and the chemical composition of the essential oil of X. itaficum Moretti from China.
基金financially supported by the National Key Research and Development Program of China(No.2018YFC0308603)the Pilot Technology for Chinese Academy of Sciences(No.XDA2203003)the National Natural Science Foundation of China(Nos.51972321 and 51879269)。
文摘High piezoelectric properties and superior thermal stability are both important indicators of piezoelectric ceramics serving at high temperature.However,since these properties are usually mutually exclusive,high performance and superior thermal stability are hard to achieve simultaneously.Here we report that a high piezoelectricity(d_(33)∼562 pC/N)and superior thermal stability(the variation is within 7%from 20 to 330℃)were both achieved in 0.4 mol%ZnO-doped 0.02Pb(Sb_(1/2)Nb_(1/2))-0.51PbZrO_(3)-0.47PbTiO_(3) by high-temperature poling.Compared with traditional poling method,high-temperature poling method forms a small-sized and highly oriented domain structure,which can effectively improve the piezoelectric and dielectric properties of piezoelectric ceramics.At the same time,the enhanced pinning effect of defect ions and stabilized domain structure due to high-temperature poling also contribute to the superior temperature stability of the piezoelectric and dielectric properties.This work provides an effective method for designing piezoelectric materials with high performance and good temperature stability for high temperature sensor applications.
基金financially supported by the National Natural Science Foundation of China(Grant No.51722101,Grant No.U1808208)The financial support provided by the National Key R&D Program(Grant No.2017YFB0703001)+1 种基金the Royal Society for the provision of funding via grant NAFR1191213the Engineering and Physical Sciences Research Council support via grant EP/L025213/1.
文摘Physical metallurgical(PM)and data-driven approaches can be independently applied to alloy design.Steel technology is a field of physical metallurgy around which some of the most comprehensive understanding has been developed,with vast models on the relationship between composition,processing,microstructure and properties.They have been applied to the design of new steel alloys in the pursuit of grades of improved properties.With the advent of rapid computing and low-cost data storage,a wealth of data has become available to a suite of modelling techniques referred to as machine learning(ML).ML is being emergingly applied in materials discovery while it requires data mining with its adoption being limited by insufficient high-quality datasets,often leading to unrealistic materials design predictions outside the boundaries of the intended properties.It is therefore required to appraise the strength and weaknesses of PM and ML approach,to assess the real design power of each towards designing novel steel grades.This work incorporates models and datasets from well-established literature on marageing steels.Combining genetic algorithm(GA)with PM models to optimise the parameters adopted for each dataset to maximise the prediction accuracy of PM models,and the results were compared with ML models.The results indicate that PM approaches provide a clearer picture of the overall composition-microstructureproperties relationship but are highly sensitive to the alloy system and hence lack on exploration ability of new domains.ML conversely provides little explicit physical insight whilst yielding a stronger prediction accuracy for large-scale data.Hybrid PM/ML approaches provide solutions maximising accuracy,while leading to a clearer physical picture and the desired properties.
基金This research was financially supported by the National Natural Science Foundation Project of China(No.42202109,42272186)the China Postdoctoral Science Foundation1(BX20220351,2022M713458)+2 种基金the Research Institute of Petroleum Exploration and Development,China(2021DJ1101)the Cooperation Project of the PetroChina Corporation(ZLZX2020-02)Anonymous reviewers are thanked for their constructive comments,which helped improve the paper.Additionally,associate professor Luca Colombera is thanked for his suggestions and language polishing work.
文摘The applicability of sequence stratigraphic models to continental fluvial successions has long been topic for debate. To improve our understanding of how fluvial architectures record responses to changes in the ratio between accommodation rate and sediment-supply rate (A/S), two case studies are analyzed, including a densely drilled subsurface fluvial reservoir imaged with a seismic cube, and an outcropping fluvial succession. The subsurface dataset provides a larger, three-dimensional perspective, whereas the outcrop dataset enables observation at higher resolution. On the basis of both datasets, channel-body density, channel-body stacking patterns and their formative river types are interpreted at different scales, and how these may reflect responses to A/S change (the rate of accommodation creation relative to the rate of sediment supply) are discussed. The results indicate that (i) channel-body stacking patterns undergo four evolutionary stages along with the A/S increase, i.e., multi-story, mixed multi- and two-story, two-story, and isolated patterns;(ii) channel-body density decreases along with the channel-body stacking patterns varying from multi-story to isolated;(iii) formative rivers types are interpreted as evolving from braided planforms to braided-meandering planforms and then to meandering ones, with the increase of A/S.
基金supported by the National Key Research and Development Program of China(No.2017YFB0802502)by the Aeronautical Science Foundation(No.2017ZC51038)+4 种基金by the National Natural Science Foundation of China(Nos.62002006,61702028,61672083,61370190,61772538,61532021,61472429,and 61402029)by the Foundation of Science and Technology on Information Assurance Laboratory(No.1421120305162112006)by the National Cryptography Development Fund(No.MMJJ20170106)by the Defense Industrial Technology Development Program(No.JCKY2016204A102)by the Liaoning Collaboration Innovation Center For CSLE,China。
文摘With the wide application of electronic hardware in aircraft such as air-to-ground communication,satellite communication,positioning system and so on,aircraft hardware is facing great secure pressure.Focusing on the secure problem of aircraft hardware,this paper proposes a supervisory control architecture based on secure System-on-a-Chip(So C)system.The proposed architecture is attack-immune and trustworthy,which can support trusted escrow application and Dynamic Integrity Measurement(DIM)without interference.This architecture is characterized by a Trusted Monitoring System(TMS)hardware isolated from the Main Processor System(MPS),a secure access channel from TMS to the running memory of the MPS,and the channel is unidirectional.Based on this architecture,the DIM program running on TMS is used to measure and call the Lightweight Measurement Agent(LMA)program running on MPS.By this method,the Operating System(OS)kernel,key software and data of the MPS can be dynamically measured without disturbance,which makes it difficult for adversaries to attack through software.Besides,this architecture has been fully verified on FPGA prototype system.Compared with the existing systems,our architecture achieves higher security and is more efficient on DIM,which can fully supervise the running of application and aircraft hardware OS.
基金Supported by the National Natural Science Foundation of China(Nos.41806156,31702321)the Zhejiang Provincial Natural Science Foundation of China(Nos.LY22D060001,LY20C190008)+4 种基金the Fund of Guangdong Provincial Key Laboratory of Fishery Ecology and Environment(No.FEEL-2021-8)the Open Foundation from Key Laboratory of Tropical Marine Bio-resources and Ecology,Chinese Academy of Sciences(No.LMB20201005)the Science and Technology Project of Zhoushan(No.2020C21016)the Fundamental Research Funds for Zhejiang Provincial Universities and Research Institutes(No.2021J008)the Open Foundation from Marine Sciences in the First-Class Subjects of Zhejiang(Nos.20200201,20200202)。
文摘The complete mitogenome of Parachiloglanis hodgarti was sequenced and characterized,which is the first mitogenome of the genus Parachiloglanis within Sisoridae.The mitogenome is 16511-bp long and included 13 protein-coding genes,22 transfer RNAs,two ribosomal RNAs,and one control region.The genome composition was A+T biased(58.64%)and exhibited a positive AT-skew(0.095)and a negative GC-skew(-0.283).Compared with other Sisoridae fishes,the characteristics of nucleotide skews,codon usage,and amino acid usage of the P.hodgarti mitogenome are more similar to those of non-Glyptosternoid fishes.Furthermore,the phylogenetic trees show that Sisoridae fishes fall into four major clades and P.hodgarti(CladeⅠ)is basal to the Sisoridae family,forming a sister clade to the Glyptosternoids(CladeⅣ).The topological structures constructed in this study raised doubts over the traditional classification system.These results will help better understand the feature s of the P.hodgarti mitogenome and provide a reference for further phylogenetic research on Sisoridae species.
文摘The cognitive processing mechanism of humor refers to how the system of neural circuitry and pathways in the brain deals with the incongruity in a humorous manner. The past research has revealed different stages and corresponding functional brain activities involved in humor-processing in terms of time and space dimensions, highlighting the effects of the time windows of about 400 ms, 600 ms, and 900 ms. However, much less is known about humor processing in light of the frequency dimension. A total of 36 Chinese participants were recruited in this experiment, with Chinese jokes, nonjokes, and nonsensical sentences used as the stimuli. The experimental results showed that there were significant differences among conditions in the P200 effect, which signified that the incongruity detection had already been integrated and perceived at about 200 ms, prior to the semantic integration at about 400 ms. This pre-processing is specific to Chinese verbal jokes due to the simultaneous involvement of both orthographic and phonologic parts in processing Chinese characters. The analysis on the frequency dimension indicated that beta’s power particularly reflected the characteristics of different stages in Chinese verbal humor processing. Jokes’ and nonsensical sentences’ relative power changes on the beta band ranked significantly higher than that of nonjokes at about 200 ms, which suggested the existence of more difficulties in meaning construction in pre-processing the incongruities. This indicated a continuity between the analysis of event related potential (ERP) components and neural oscillations and revealed the key role of the beta frequency band in Chinese verbal joke processing.
文摘Flower development and plant architecture determine the efficiency of mechanized harvest and seed yield in Brassica napus.Although TERMINAL FLOWER 1(AtTFL1)is a regulator of flower development in Arabidopsis thaliana,the function and regulatory mechanism of TFL1 orthologs in B.napus remains unclear.Six BnTFL1 paralogs in the genome of the B.napus inbred line‘K407’showed steadily increasing expression during vernalization.CRISPR/Cas-induced mutagenesis of up to four BnTFL1 paralogs resulted in early flowering and alteration of plant architecture,whereas seed yield was not altered in BnTFL1 single,double,or triple mutants.Six BnTFL1 paralogs,but not BnaA02.TFL1,showed an additive and conserved effect on regulating flowering time,total and terminal flower number,and plant architecture.BnaA10.TFL1 regulates flower development by interacting with BnaA08.FD through the protein BnaA05.GF14nu,resulting in the transcriptional repression of floral integrator and floral meristem identity genes.These findings about the regulatory network controlling flower development and plant architecture present a promising route to modifying these traits in B.napus.
文摘In 2018,a total of US$166 billion global economic losses and a new high of 55.3 Gt of CO_(2)equivalent emission were generated by 831 climate-related extreme events.As the world’s largest CO_(2)emitter,we reported China’s recent progresses and pitfalls in climate actions to achieve climate mitigation targets(i.e.,limit warming to 1.5-2°C above the pre-industrial level).We first summarized China’s integrated actions(2015 onwards)that benefit both climate change mitigation and Sustainable Development Goals(SDGs).These projects include re-structuring organizations,establishing working goals and actions,amending laws and regulations at national level,as well as increasing social awareness at community level.We then pointed out the shortcomings in different regions and sectors.Based on these analyses,we proposed five recommendations to help China improving its climate policy strategies,which include:1)restructuring the economy to balance short-term and long-term conflicts;2)developing circular economy with recycling mechanism and infrastructure;3)building up unified national standards and more accurate indicators;4)completing market mechanism for green economy and encouraging green consumption;and 5)enhancing technology innovations and local incentives via bottom-up actions.